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1 Introduction

Laws of physics and, increasingly, also those of other sciences are in many cases
expressed in terms of differential or integro—differential equations. If one models
systems evolving with time, then the variable describing time plays a special role,
as the equations are built by balancing the change of the system in time against its
‘spatial’ behaviour. In mathematics such equations are celletution equations

Equations of the applied sciences are usually formulated pointwise; that is,
all the operations, such as differentiation and integration, are understood in the
classical (calculus) sense and the equation itself is supposed to be satisfied for all
values of the independent variables in the relevant domain:

9,
au(t,x) = [Au(t,)](z), z€Q

u(t,0) = u, (1)

where A is a certain expression, differential, integral, or functional, that can be
evaluated at any point € (2 for all functions from a certain subsgt
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When we are trying to solve (1), we change its meaning by imposing various
a priori restrictions on the solution to make it amenable to particular techniques.
Quite often (1) does not provide a complete description of the dynamics even if
it looks complete from the modelling point of view. Then the obtained solution
maybe be not what we have been looking for. This becomes particularly important
if we cannot get our hands on the actual solution but use ’soft analysis’ to find
important properties of it. These lecture notes are devoted predominantly to one
particular way of looking at the evolution of a system in which we describe time
changes as transitions from one state to another; that is, the evolution is described
by a family of operatorsG(t)).>o, parameterised by time, that map an initial
state of the system to all subsequent states in the evolution; that is solutions are
represented as

u(t) = G(t)uo, )

where(G(t)):>o is the semigroup and, is an initial state.

In this case we place everything in some abstract spasehich is chosen
partially for the relevance to the problem and partially for mathematical conve-
nience. For example, if (1) describes the evolution of an ensemble of particles,
thenw is the particle density function and the natural space seems Iq (&
as in this case the norm of a nonnegativehat is, the integral ove®, gives the
total number of particles in the ensemble. It is important to note that this choice is
not unique but is rather a mathematical intervention into the model, which could
change it in a quite dramatic way. For instance, in this case we could choose the
space of measures éhwith the same interpretation of the norm, but also, if we
are interested in controlling the maximal concentration of particles, a more proper
choice would be some reasonable space with a supremum norm, such as, for ex-
ample, the space of bounded continuous function8 p@’,(£2). Once we select
our space, the right-hand side can be interpreted as an opdratér(A) — X
(we hope) defined on some subggtA) of X (not necessarily equal t&) such
thatz — [Au](z) € X. With this, (1) can be written as an ordinary differential



equation inX:

u = Au, t>0,

The domainD(A) is also not uniquely defined by the model. Clearly, we would
like to choose it in such a way that the solution originating frox)d) could be
differentiated and belong tB(A) so that both sides of the equation make sense.
As we shall see, semigroup theory in some sense fdbgey upon us, although

it is not necessarily the optimal choice from a modelling point of view. Although
throughout the lectures we assume that the underlying space is given, the choice
of D(A), on which we define the realisatiof of the expressiom, is a more
complicated thing and has major implications as to whether we are getting from
the model what we bargained for.

Though we also discuss a general theory, we focus on models preserving some
notion of positivity. non-negative inputs should give non-negative outputs (in a
suitable sense of the word).

1.1 What can go wrong?

Dishonesty. Models are based on certain laws coming from the applied sciences
and we expect the solutions to equations of these models to return these laws.
However, this is not always true: we will see models built on the basis of popula-
tion conservation principles, solutions of which, for certain classes of parameters,
do not preserve populations. Such models are cdlilgtibnest Dishonesty could

be a sign of a phase transition happening in the model, or simply indicate limits
of validity of the model.

Multiple solutions. Even if all side conditions relevant to a physical process
seems to have been built into the model, we may find that the model does not



provide full description of the dynamics; while for some classes of parameters
the model gives uniquely determined solutions, for others there exist multiple
solutions.

We will see that methods based on positivity methods provided a comprehen-
sive explanation of these two 'pathological’ phenomena.

1.2 And if everything seems to be fine?

If we make sure that the abstract model (3) gives as a reasonable description of
the phenomena at hand, we can analyse its further properties. One of the most
frequent questions asked by practitioners is stability and long time behaviour of
solutions. In particular, in population theory an important problem is the existence
of dominating long time pattern of evolution. More precisely, we can pose the
following questions:

1. Does there exists a special solutionof (3) of the formu*(t) = e tw;, for
some real* and an element) € X such that for any other solution there
is a constant’ such that

u(t) = CeNug + Ofexp (A — €)t) 4)

for somee > 0 (independent of))? An added bonus would be-if; could
be selected positive.

2. If this is impossible, may be there is a finite dimensional projecfion
which commutes with the semigrodg(t) and such that

e M'G(t) — P — 0, exponentially fast. (5)

3. More generally, we may ask whether there exists a finite dimensional projec-
tion P, which commutes with the semigroup(¢) and such tha&(t)|px
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can be extended to a group of operators of the féffhwith all eigenvalues
of M satisfyingRA = \* and

(I —P)G(t) =0(e M9 ast — oco. (6)

for somee > 0.

Those familiar with the finite dimensional population theory will recognize
that in the first case we have primitive irreducible transition matrix while in the
second and third the matrix is only irreducible with different properties of the
largest eigenvalue.

We say that the semigroufg-(¢)).>o hasasynchronous exponential growth
(AEG) if (4) is verified (and positive AEG ifi* is positive). If only (5) is satis-
fied, then we say thd(G(¢)).>o hasmultiple asynchronous growtMAEG) and,
finally, if (6) holds, then we say that (¢)):>, hasextended asynchronous growth
(EAEG).

The name "asynchronous exponential growth’ comes precisely from the pop-
ulation biology when it is observed that in many cases initially synchronized pop-
ulations lose synchrony after just a few generations. It reflects the fact that what-
ever distribution was observed at an initial times, the population evolves towards
an asymptotic distribution, where the proportion of individuals in a given stage is
constant.

Here the interplay of compactness and positivity techniques can produce in
infinite dimension results which are very close to the classical Frobenius-Perron
theory.

However, unlike in finite dimension, some models which behave perfectly well
for some classes of parameters, can degenerate into chaotic behaviour for others.
We shall demonstrate this on two examples. One is taken from classical birth-
and-death type problems, the other in a variant of the age structured population
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model.

It is worthwhile to note that phase transitions and chaos usually are associated
with nonlinear phenomena. Here we will see that they can occur in linear ones but
for this the latter must be infinite dimensional.

2 Spectral properties of operators

The considerations below will be carried in an arbitrary Banach space. However,
most applications in the present lectures are restricted to the Banach spaces which
are commonly used in the population theory due to their natural interpretation. It
is worthwhile to understand that, in applications, working in a particular Banach
space means simply that the functions we are working must satisfy a numerical re-
striction which is important in the modelling process. In population theory usually
we are interested in the evolution of an ensemble of elements the state of which is
described by a function(t, x) representing either a number of elements in a given
state (if the number of states is finite or countable) or the density of particles in the
stater, if z is a continuous variable. In many cases we are interested in tracking
the total number of elements of the population which, for a time given by

Z n(t, ),

zeQ

where() is the state space, §t is countable and

/ n(t, z)dz,

z€e)
if Qis a continuum. To make a full use of the tools of the functional analysis, we
must allow entries of arbitrary sign, so it is not surprising that using this point of
view we are working either in

o0

b= {(niien; Y Inil < o0}

i=1
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or

Li(Q2) := {z — n(x); /]n(x)\dx < o0},

Q
where in the first case we todk = N.

Of course, as noted in Introduction, if we are more interested in maximal con-
centration of elements, we should rather work in spaces of functions with supre-
mum norm.

If uncomfortable with abstract notions, one can substitute one of the spaces
described above for a generélto get a better understanding of the main ideas of
the lectures.

2.1 Operators

Let X,Y be real or complex Banach spaces with the norm denotefd -ty or

I Il

An operatorfrom X to Y is a linear ruleA : D(A) — Y, whereD(A) is a
linear subspace oX, called thedomainof A. We use the notatiofA, D(A)) to
denote the operatot with domainD(A).

By £(X,Y"), we denote the space of all bounded operators betieandY’;
that is, the operators for which

JAll = sup Az] = sup [[Az] < +oc. @)
flz]I<1 [|lzll=1

The above defines a norm which tuigX, Y') into a Banach space. by introduc-
ing the normZ( X, X) is abbreviated ag(X).

If Y C X is alinear space, then tipart of A in Y is defined as

Ayy = Ay, D(Ay)={z e DA)NY; Az € Y}. 8)
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A restriction of operatoiof (4, D(A)) to D C D(A) is denoted by |p.
ForA,B e L(X,Y),wewriteA C Bif D(A) C D(B) andB|p) = A.

Two operatorsA, B € £(X) are said to commute il B = BA. An arbitrary
operatorA is said tocommutenith B € £(X) if

BA C AB. 9)
This means that for any € D(A), Bz € D(A) andBAz = ABzx.

We define themageof A by
ImA={yeY,; y= Ax for some z € D(A)}
and thekernelof A by
Ker A={x € D(A); Ax = 0}.
Furthermore, thgraphof A is defined as
G(A) ={(x,y) e X xY; x € D(A),y = Ax}. (10)

We say that the operatot is closedif G(A) is a closed subspace of x Y.
Equivalently, A is closed if and only if for any sequen¢e,,),cn C D(A), if
lim,, . 2, = zin X andlim,,_.., Az, = yinY, thenz € D(A) andy = Ax.

An operatorA in X is closableif the closure of its grapli’(A) is itself a graph
of an operator, that is, {f0, y) € G(A) impliesy = 0. Equivalently,A is closable
if and only if for any sequencér,,),en C D(A), if lim,, ..z, = 0in X and
lim, .., Az, = yinY, theny = 0. In such a case the operator whose graph is

G(A) is called theclosureof A and denoted byl.

2.1.1 Compact operators

Let us recall that an operatdt € L£(X,Y), X, Y-Banach spaces, is compact
(resp. weakly compact) if the image of the unit ballXnis a relatively compact
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(resp. weakly compact) subsetf

Most relevant properties of compact operators are preserved if the operator
K € X is power compact; that is, K™ is compact for some: € N.

Importance of power compact operators stems, in particular, from the fact
that in certain spaceg€’(£2), L,(2)) the square of a weakly compact operator is
compact.

In applications it is often needed thdt’ be power compact for anyl €
L(X). Such operators are callstrictly power compactSince the the space of
weakly compact (and also compact, for that matter) operators is a two sided ideal
in £(X), weakly compact operators @(£2), L, (2) are strictly power compact.

Example 1 Consider the integral operator given formally by

Tfx) = / ke, ) f(y)dy,

Q

where(2 C R". The operatofl’ is compact fromL,, () to L,,(Q2) if & € Ly, ,(2 x
), wherel/p+1/q = 1, providedp > 1. Forp = 1, the assumption correspond-
ing assumption

k€ L10o(S2 x ) (11)

is not sufficient for compactness. For sughto be compact, we require e.g.
ke C(Q, Lo (Q)) (see [36, p.53]). However, under assumption (11), the operator
K is weakly compact and thus strictly power compact ([24]).

2.2 Spectral properties of a single operator

Let A be any operator itX. Theresolvent sebf A is defined as
p(A)={\ e C; N\ — A: D(A) — X is invertible}. (12)
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We call (Al — A)~! the resolvent ofA and denote it by
R\ A) =AM —A) Xep(A).

The complement gf(A) in C is called thespectrunof A and denoted by (A). In
general, it is possible that eithpfA) or o(A) is empty. The spectrum is usually
subdivided into several subsets. We follow the approach of [38, 26] which, though
being not the most common, is very suitable for the description of asymptotics of
semigroups. The most important is

e Point spectrunw,(A) is the set o\ € o(A) for which the operatoh! — A
is not one-to-one. In other words,(A) is the set of all eigenvalues df.

A generalization of the point spectrum which will play an important role later is
the approximate spectrum:

e Approximate spectrum,(A) is the set ofA € o(A) for which either the
operatorA\/ — A is not one-to-one or the rander A is not closed.

The nameapproximate spectrumomes from the following property which is of-
ten used to as a definition.

Lemmal If (A, D(A)) is a closed operator inX, then\ € o,(A) if and only
if there is a sequencér,),cy C D(A) such that|z,|| = 1, » € N, and

limy, oo || Az, — Az || = 0.

The last part of the spectrum is

e Residual spectrum,.(A) is the set of\ € o(A) for which Im (A — A) is
not dense inX.
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Clearly, thes,, o, ando, are not disjoint (in particularr, C o,) but we clearly
have
0(A) =0,(A)Uo,(A).

Moreover, o, (A) = 0,(A*) (A* denotes the adjoint afl) and the topological
boundary ofr(A) satisfies
0o(A) C o,(A) (13)

Remark 1 Typically, o(A) is divided intoo,(A) (defined as above), the continu-
ous spectruna.(A) which is the set oi € o(A) for which the operatoAl — A

is one-to-one and its range is denseXirbut not equal toX and the residual spec-
trum is defined as the set afe o(A) for which the operatok/ — A is one-to-one

and its range is not dense in. Clearly,o.(A) C o,(A) but we shall not explore
further relations between these two definitions. However, the continuous spectrum
will come in handy in e.g. Theorem 45.

The resolvent of any operater satisfies theesolvent identity
R(X\A) = R(p, A) = (= MR A)R(p, A), A pep(d),  (14)

from which it follows, in particular, thaR(\, A) andR(u, A) commute. It follows
thatp(A) is an open set anf2(\, A) is an analytic function oh € p(A) which
can be written as the power series

RO\ A) =) (= N)"R(p, A (15)

n=0

for |u — A < ||R(u, A)||~*. For any bounded operator the spectrum is a compact
subset ofC so thatp(A) # 0. If Ais bounded, then the limit

r(A) = lim /A7 (16)

exists and is callethe spectral radiusClearly,r(A) < [|A]|.
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Theorem 2 The spectral radius ofl has the following properties.

(i) We have
R(A, A) = A, (17)
n=0

where the series converges in the operator normXpr> r(A).
(i) For |A| < r(A) the series in (17) diverges (in the operator norm).

(iii)
r(A) = sup [A| (18)
A€o (A)

To show that a poinA € C belongs to the spectrum we often use the following
result.

Theorem 3 Let A be a closed operator. € p(A), then
1 S 1
(R(AA)) — RO A

In particular, if \,, — X\, A, € p(A), then\ € o(A) ifand only if{||R(\,, A)|| }nen
iS unbounded.

dist(\, o(4)) = - (19)

The concept of the spectral radius allows to introduce another frequently used
part of the spectrum. Theeripheral spectrunof a bounded operatot is the set

Operr(a) = {A € 0(A); |A| = r(A)}. (20)

Clearly,o e (4)(A) is compact and, by (18), non-empty.

For an unbounded operatdrthe role of the spectral radius often is played by
the spectral boundi(A) defined as

s(A) =sup{R\; A€ a(A)}, (21)

16



and the peripheral spectrum dfin this case is correspondingly defined as
Opers(a) = AN € 0(A); Rel = s(A)}. (22)
An important role in analysis is played by the Spectral Mapping Theorem.

Supposed € L(X) andf(z) = Y .-, a,z" is an analytic function in a disc
containingo(A). Then we can define a functigii A) by

o0

fA) = a,A"

1=0

where the series is convergent&sl) is contained in a circle with radiug A).
An alternative definition can be obtained by the Dunford integral

F4) = i) [ SR A

wherey is a closed contour surroundingA).

Spectra ofA and f(A) are related by the Spectral Mapping Formula

a(f(A)) = f(o(A4)). (23)

2.2.1 Decomposition of the spectrum

Let A be a closed operator. An important case occusg if) can be decomposed
into two disjoint parts, one of which is compact and the other closed. We shall
focus on the case when the compact part consists of an isolated\paiht (A).

This means that the resolvent can be expanded into a Laurent series

o0

RO\ A) = ) (A= X)"B, (24)

n=—0oo
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for 0 < |A — X\o| < ¢ for sufficiently smalls. The coefficientsB,, are bounded
operators given by the formula

1
By=o— [ (A=) "'R(\ A)dA, n €L (25)
Uy
v

wherey is a positively oriented simple curve surroundingn p(A). Application
of the Cauchy integral formula gives

B_wB_j =B, nkeN (26)

The coefficient? = B_; is called theresidueof A. If there existsk such that
B_i # 0 while B_,,, n > k, then) is called thepoleof R(\, A) of orderk. We
have

By = lim (A — \)*R()\, A).

A— Ao

The following properties can be found in e.g. [32, 47].

Theorem4 1. The operatorB_; is a projection onX with Im B_; and
Im (I — B_;) closed.

2. The restriction ofd to Im B_; is bounded and has spectruji }.
3. Ifdim Im B_; < oo, then) is a pole of R(\, A).

4. If \o is a pole of R(\, A) of orderk, then it is an eigenvalue of and, for
J =0,

Im B_y = Ker (Al — A = Ker (\oI — A)*H,
Im (I — B_y) = Im (Mo — A)* = Im (Mg — A)*7, (27)

and
X = Ker (A — AF@ Im (A — A).
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Let us prove the first part of (4), which frequently occurs in applications. Multi-
plying (24) by(\I — A) we obtain
I = (A=) + (Al —4) Y (A=X)"B,

n=—oo
o0

= D (A=2)""Ba+ Y (A=) (NI — A)B,
so that
(NI — A)B_,, = —B_(n11).

Sincen is the order of the pole3_,;1) = 0. On the other hand, sinde_,, # 0,
there isf such thatr = B_,, f # 0 is an eigenvector correspondingXg O

We define
Kero(Ml — A) = U Ker (M\I — A)F;
k>0

Ker,, is called the generalized eigenspacedoforresponding to the eigenvalue
Xo- dim Im P is called thealgebraic multiplicityof \q, denotedm,, while
my = dim Ker (Al — A) is called thegeometric multiplicity If m, = 1, then
Ao is called aralgebraically simplepole. If k is the order of the polek(= oo if

Ao IS an essential singularity), then

mg+k—1<m, <mgyk
(0 - 00 := 00). Thus,m, < oo if and only if A is a pole withm, < oo.

If Ais closed withp(A) # ), then) is an isolated point of (A) if and only if
(A — o) !isisolated ino(R(\, A)) and the residues and orders of the respective
poles coincide.

In particular, if A has compact resolvent, thetiA) consists only of poles of
finite algebraic multiplicity.
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2.2.2 Turning approximate eigenvalues into eigenvalues

There is a very useful construction extending a given Banach space, called an
ultrapowerof X ([1]) or F-product([38]). Here we shall discuss it in a restricted
setting. Let,(X) (resp.co(X)) be the vector space of bounded (resp. converging
to 0) sequencestr,, )y C X. We denote

X = loo(X) feo(X)
with the classes of equivalence denoted by
T = (Tn)nen + co(X).
The spaceX becomes a Banach space under the norm

|Z]| = limsup ||z,]|-

n—oo

There is a natural embeddifg > = — (z,z,...) 4+ ¢o(X) € X so thatX can be
identified with a closed subspace %t

Bounded operators o give rise to bounded operators &n for A € L(X)
andz = (z,)nen + co(X) we have

At = (Axy, Az, ...
and it can be proved thgtd|| = || A]|.

If (z,,)nen IS @approximate eigenvector of with approximate eigenvalug,
then ||Az,, — Az,|| — 0 asn — oo. But this is the same as saying thiat=
(21, s,...) + co(X) is an eigenvector ofl with the same eigenvalue. Actually,
even more is true.

Theorem 5 [21, p.290] LetA € £(X). Then
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1. o(A) = o(A);
2. 04(A) = 0a(A) = 0, (A);

3. R(\, A) = R(\, A) for X € p(A) = p(A);

4. \o € o(A) is apole ofR(\, A) of orderp if and only if\, € o(A) is a pole
of R(\, A) of orderp.

Unfortunately, for unbounded operators and semigroups the situation becomes
more complicated and we shall return to this topic later.

2.2.3 Spectrum of compact and power compact operators

The main results, summarizing the spectral properties of compact and power com-
pact operators, are given in the following theorem.

Theorem 6 If K is compact (or power compact), then

(i) The spectrum of{ is at most countable and contaif8} if dimX = ~;

(i) If o(K) is infinite and{\;, A, - - -} is any enumeration of it, thek, — 0 as

n — OoQ.

(iif) Every non-zero point of spectrum is a pole of the resolvent and thus is an
eigenvalue.

Proof. For compact operators this result is known as the Fisher-Riesz theory.
Extension to power compact operators is possible due to the Spectral Mapping
Theorem which gives(K") = {\"; A € o(K)} and proves the assertions about
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the spectrum. To prove (iii) we consider the restriction/ofto the projection
X, = B_;X associated with # X\ € o(K). X, is invariant with respect to
K and thusK|x, is power compact withv(K|x,) = {\} by Theorem 4(2).

If dimX, = oo, then this contradicts point (i) of the present theorem. Thus
dim X, < oo and the result follows by Theorem 4 (4). O

2.2.4 Essential spectrum

As we have seen above, it is important to separate 'good’ points of spectrum from
'bad’ ones. The concept efssential spectrummave been introduced with this idea
in mind.

Definition 1 The essential spectrum df denoted by . (A) is the setoh € o(A)
which satisfy at least one of the following conditions

(i) Im (A — A) is not closed:;
(i) dim KA — A) = c;

(iii) A is an accumulation point of (A).

Essential spectrum is closely related to the concept of Fredholm points\e
say that\ is a Fredholm point of4, and write\ € pg(A), if Ker (M — A) is
finite dimensional andm (A —A) is closed of finite codimension. The Fredholm
spectrum of4, denotedr(A), is the set of\ € C which are not Fredholm points
of A. Clearly,

oy(A) C oc(A),

but, in general, these sets are different (e.g., there may exist non-isolated Fredholm
points of A.
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Remark 2 Several authors (see e.g. [38, 26]) define the essential spectrum as
the Fredholm spectrum. It has the additional advantage that it coincides with the
normal spectrum of the canonical imageAn the quotient spacg(X)/KC(X),
where/C(X) is the ideal of compact operators . This allows to define the
Fredholm norm ofA as

| Alle = dist(4, K(X)) = int{[|A - K|, K € K(X)}

As we shall see later, for the purpose of these lectures, the difference between
both definitions are not significant.

We mention that there are also other, non-equivalent, definitions of essential
spectrum.

We have the following result [20, 21].

Theorem 7 Suppose\, € o(A) anddim Ker (Al — A) < 4+00. Then), €
a(A)\ o.(A) ifand only if R(\, A) is analytic in a neighbourhood of, and has
a pole at\.

Without assumption thatim Ker (A — A) < +oo we can prove only that if
Ao € 0(A) \ 0.(A), then) is a pole of R(\, A).

In particular, if \o is a non-essential point af(A), thenim (Al — A) is of
finite codimension (see (27)) and thius€ pg(A).

We note some properties of the spectrum, [5]:

(a)into C o;

(b) 0o, C 0.
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We can use characterization (18) of the spectral radius of a bounded operator to
define analogous concepts related to the essential and Fredholm spettra of

re(A) = sup |},
A€o (A)

re(A) = sup |\ (28)
)\GO’@(A)

Clearly, we haves(A) < r.(A). On the other hand, sinee(A) is a compact
set (for A bounded), there ia € o.(A) with || = r.(A). Such\is in do.(A),
hence, by (b) above, itis ing(A). Thereforers(A) > r.(A) and

re(A) =r.(A). (29)
Remark 3 Since||- || is a norm andrs(A) is coincides with the spectrum of the
canonical imagel of A in £(X)/K(X), we have also

re(A) = r(fl) = lim 4 HA"H¢

n—oo

Using the above discussion, the essential radius can be characterized as follows

r.(A) is the smallest € R, such that ever\ € o(A) satisfying
|A| > ris an isolated pole of finite algebraic multiplicity. For any
r > r.(A), these{\ € o(A); |A| > r} is finite.

The last statement follows from the fact that the spectrum of a bounded operator
is compact and any accumulation pointdf4) belongs tar.(A).

3 Banach Lattices and Positive Operators

In many processes in the natural sciences only nonnegative solutions are mean-
ingful. This is the case when the solution is a probability, a density function, the
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absolute temperature, and so on. Thus, mathematical models of such processes
should have the property that nonnegative data yield nonnegative solutions. If
we work in concrete spaces of functions, then the notion of positivity is natural:
either pointwise for continuous functions or almost everywhere in the spaces of
measurable functions. However, in a general setting we have to find an abstract
notion generalizing the pointwise concepts of positivity.

3.1 Defining Order

In a given vector spac& an order can be introduced either geometrically, by
defining the so-callegositive condin other words, what it means to bepas-
itive elemenf X), or through the axiomatic definition. We follow the second
approach.

Definition 2 Let X be an arbitrary set. A partial order (or simply, an order)
on X is a binary relation, denoted here by*, which is reflexive, transitive, and
antisymmetric, that is,

(1) z > z for eachz € X;
(2)x >yandy > ximplyz =y foranyz,y € X;

(B)x >yandy > zimplyx > z foranyz,y, z € X.

We need a number of related conventions and definitions. The notationy
meansy > z. x > y meanse > y andx # y. An upper boundor a setS C X
is an element: € X satisfyingz > y for all y € S. An elementz € S is said
to bemaximalif there is noS > y # x for whichy > x. A lower boundfor S
and aminimal elemenare defined analogously. greatest elemer{tespectively,
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aleast elementof S is anx € S satisfyingz > y (respectivelyx < y) for all
yeS.

We note here that in an ordered space in general there are elements that cannot
be compared and hence the distinction between maximal and greatest elements is
important. A maximal element is the ‘largest’ amongst all comparable elements
in S, whereas a greatest element is the ‘largest’ amongst all elemeftslfra
greatest (or least) element exists, it must be unique by axiom (2).

Thesupremunof a set is its least upper bound and themumis the greatest
lower bound. The supremum and infimum of a set need not exist. It is worthwhile
to emphasize that an elementwhich is an upper bound df, is a supremum of
the setsS if, for any upper bound of S, we haves < y.

Letz,y € X andx < y. Theorder interval[z, y| is defined by

[7,y] ={2 € X; 2 <2 <y}

For a two-point se{z, y} we writex A y or inf{z, y} to denote its infimum and

x Vy orsup{z,y} to denote supremum. We say thats alattice if every pair of
elements (and so every finite collection of them) has both supremum and infimum.
From now on, unless stated otherwise, any vector sparsereal.

Definition 3 An ordered vector space is a vector spacesquipped with partial
order which is compatible with its vector structure in the sense that

(4)x > yimpliesz + z >y + zforall z,y, z € X;
(5) z > y impliesax > ay foranyz,y € X anda > 0.
The setX, = {x € X; = > 0} is referred to as the positive cone &f

If the ordered vector spac¥ is also a lattice, then it is called a vector lattice
or a Riesz space.
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Typical examples of Riesz spaces are providedumgtion spaceslif X is a
vector space of real-valued functions on aggihen we can introduce a pointwise
order inX by saying thatf < g in X if f(z) < g(x) foranyz € S. Equipped
with such an orderX becomes an ordered vector space. Let us defing onX
the operationg Vv g and f A g by taking pointwise maxima and minima; that is,
forany f,g € X,

(fVg)x) = max{f(z) g(z)},
(fAg)a) = min{f(z),g(x)},

We say thatX is afunction spacef f Vv g, f A g € X, wheneverf,g € X.
Clearly, a function space with pointwise ordering is a Riesz space. Examples
of function spaces are offered by the spaces of all real funci®hsr all real
bounded functiond/ () on a set?, and by, defined earlier, spacés$), C(Q),

ori,, 1 <p<oo.

If Q2 is a measure space, then all above considerations are valid when the point-
wise order is replaced by < g if f(x) < g(x) almost everywhere. With this
understandingl(€2) andL,(2) spaces with < p < co become function spaces
and are thus Riesz spaces.

We only consider Archimedean spaces; that is, spaces havig the property that
if inf,cn{n"'z} = 0 holds for anyr € X,.

The operations of taking supremum or infimum in a Riesz space have several
useful properties which make them similar to the numerical case. In particular,
we can define the positive and negative part-of X, and its absolute value,
respectively, by

ry = sup{,0}, @ =sup{—z,0}, |o| = supfe, —z}.

The functionsz, y) — sup{z, y}, (z,y) — inf{z,y},2 — =4 andx — |z| are
collectively referred to as thattice operation®f a Riesz space. They are related
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by

rT=xL —T_, x| =2y + 2. (30)

The absolute value has a number of useful properties that are reminiscent of the
properties of the scalar absolute value; that is, for exanples 0 if and only if
x =0, |ax| = |a||z| for anyxz € X and any scalad.

For a subset of a Riesz space we write

sup{z,S} = zV.S:={sup{z,s}; s € S5},
inf{z,S} = =z AS:={inf{z,s}; se 5}

The following infinite distributive laws are used later.

Proposition 1 [3, Theorem 1.5] and [34, Theorem 2.13.1] L&tbe a nonempty
subset of a Riesz spage If sup S exists, theRup{inf{z, S}} andsup{sup{z, S}}
exist for eachr € X and

sup{inf{z, S}} = inf{z,supS},
sup{sup{z, S}} = sup{z,supS}. (31)

Similarly, if inf S exists, thennf{sup{z, S}}, inf{inf{z, S}} exist for eachw €
X and

inf{sup{z, S}} = sup{z,inf S},
inf{inf{x, S}} = inf{z,infS}. (32)

The existence of suprema or infima of finite sets, ensured by the definition of a
Riesz space, does not extend to infinite sets. This warrants introducing a more
restrictive class of spaces.
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Definition 4 We say that a Riesz spa&eis Dedekind (or order) complete if every
nonempty and bounded from above subseX ¢fas a least upper bound K. X

is said to be o-Dedekind or ¢-order) complete, if every bounded from above
nonempty countable subset®fhas a least upper bound.

Example 8 The space” ([0, 1]) is noto-order complete (and thus also not order
complete). To see this, consider the sequence of functions given by

1 for nggé—%,
fal@)=q n(3—2) for $-L<ao<i
0 for %<x<1.

This is clearly an increasing sequence bounded from abovgdy= 1. How-

ever, it converges pointwise to a discontinuous funcfign) = 1 for z € [0,1/2)
andf(z) = 0 for z € [1/2,0]. In general, spaces((2) are noto-order complete
unless(} consists of isolated points. On the other hand, the spaces< p < oo,

are clearly order complete, as taking the coordinatewise suprema of sequences
bounded from above by dp sequence produces a sequence whichig in

The spaced.,(€2),p € {0} U [1, 00| are also order complete but the proof is
much more delicate, see [9, Example 2.52].

3.2 Banach Lattices

As the next step, we investigate the relation between the lattice structure and the
norm whenX is both a normed and an ordered vector space.
Definition 5 A norm on a vector lattic& is called a lattice norm if
7| < [y| implies [lzf| < [ly]|. (33)
A Riesz spac& complete under the lattice norm is called a Banach lattice.
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Property (33) gives the important identity:

el = [lf«]l, — 2eX. (34)

If X is a normed lattice, then all lattice operations are uniformly continuous
in the norm ofX with respect to all variables involved.

Positive operators will be discussed in more detail below. However, we need
some terminology related to operators at this instance. An opesattafined
on X is said to be positive ifAz > 0 for x > 0. A positive operatot4 is said
to be alattice homomorphisnif A(x V y) = Az vV Ay. It can be proved that
this is equivalent toA preserving all other lattice operations (e.glz| = |z|,
(Az)* = Ax™, etc). If A is a one-to-one lattice homomorphism, it is called a
lattice isomorphisnand if, additionally,A is an isometry, then it is calledlattice
isometry

Bounded positive functionals form a convex coneiri and thus define a
natural ordering ofX*. It can be proved, [3, Theorem 12.1], that the normed
dual of a normed Riesz space is a Banach lattice under this order. In addition,
the evaluation mapgX’ — X** is a lattice isometry so thaX’ becomes a Riesz
subspace ok **.

3.2.1 Sublattices, ideals, bands, etc

A vector subspacé, of a vector latticeX, which is ordered by the order inherited
from X, may fail to be a vector sublattice &f in the sense thak, may be not
closed under lattice operations. For instance, the subspace
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does not contain any nontrivial nonnegative function, and thus it is not closed
under the operations of taking. or | f|.

Accordingly, we callX, avector sublatticer aRiesz subspade X, is closed
under lattice operations.

A subsetS of a vector lattice is called solid if for any,y € X fromy € S
and|z| < |y| it follows thatz € S. A solid linear subspace is calleédeal,
ideals are automatically Riesz subspaceshafdin X is an ideal that contains
suprema of all its subsets. Any subsetC X uniquely determines the smallest
(in the inclusion sense) Riesz subspace (respectively, ideal, bakdyamtaining
S, called theRiesz subspace (respectively, ideal, band) generated by

Example 9 Closed ideals can be used to construct new useful Banach lattices by
taking quotients. LeX be a Banach lattice ankl a closed ideal inX. Then the
quotient space/E is a Banach space. We can define an ordeX jix through

the following relation. FotX/E > %,y we say thatt < g if there arer; € 7 and

y1 € g such thatr; < y; in X and one can prove th&/F with this order and

the canonical quotient norm is a Banach lattice.

Consider, in particular, thé'-product discussed in Subsection 2.2.2Xlfs a
Banach lattice, then the absolute value Qii.X) is given by

|(@n)nen| = ([2n])nen-

Sincecy(X) is a closed ideal i, (X), then X is a lattice with the canonical
injection becoming a lattice homomorphism.

Example 10 Closed ideals it = L,(2), which are not equal t&, are precisely
the sets of the form

I'={feX; Ipcou) flo =0a.e}.
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I clearly is a closed ideal.On the other hand,flet) > 0 a.e. on{2 andg € X .
Consider set$),, = {z € Q; f(x) > 1/n} and defingy,,(z) = 0onQ,, g, =
min g, n otherwise. We have < g, < n?f, henceg, € X and, clearlyg, — ¢
in L, () sinceu(Q2,,) — 0asn — oo.

In the theory developed later a particularly important part is played by ideals gen-
erated by a single point, sdy:}. Such an ideal, called thgrincipal idealgener-
ated byz, is given by

E, = {y € X; there exists A > 0 such that |y| < A|z|}.

If for some vectore € X we haveE, = X, thene is called arorder unit

A principal bandgenerated by: € X is given by
B, ={yeX; su§{|y| Anlzl} = [yl}.
ne

An element € X is said to be aveak unitif B, = X. It follows that, in a vector
lattice,e > 0 is a weak unit if and only if, for any € X, |z| A e = 0 implies
x = 0. Every order unit is a weak unit. X = C(2), where( is compact, then
any strictly positive function is an order unit. On the other handandl, spaces,
1 < p < 400, will not typically have order unitsi, include functions that could
be unbounded, fok, one can always find a sequence converging & a slower
rate than a given one). However, any strictly positive dgfunction is a weak
order unit.

An intermediate notion between order unit and weak order unit is played by

quasi-interior points We say thab # u € X, is a quasi-interior point oX if
E, = X.We have

Lemma 2 [1, Lemma 4.15] FoO # u € X, the following are equivalent.

(a) u is a quasi-interior point ofX;;
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(b) For eachz € X, we havdim,,_., ||z A nu—z|| = 0;

(b) If 0 < 2™ € X7, then<z™, u> > 0.

The name 'quasi-interior point’ comes from the fact that a unit is an interior point
of a positive cone. Thus, we have

order unit = quasi — interior point = weak order unit

and, in general, the implications cannot be reversed. The importance of quasi
interior points will become more clear when we will discuks/-spaces.

3.2.2 AM-and AL-spaces

Two important classes of Banach lattices that play a significant role later are pro-
vided by theAL- and AM - spaces.

Definition 6 We say that a Banach lattic¥ is

(i) an AL-space if|z + y|| = ||z|| + ||ly|| forall z,y € X,

(i) an AM-space ifi|z V y|| = max{||z||, ||y||} forall z,y € X .

Example 11 Standard examples of M/ -spaces are offered by the spacgs?),
where( is either a bounded subset &f*, or in general, a compact topological
space. Also the spade,,((?) is an AM-space. On the other hand, most known
examples ofdA L-spaces are the spackg(2). We observe later that these exam-
ples exhaust all (up to a lattice isometry) cased 6f - and A L-spaces. However,
particular representations of these spaces can be very different.

33



It can be proved, [3, Theorem 12.22] and [1, Theorem 3.3], that a Banach lattice
X is anAL-space (respectively M-space) if and only if its duak™ is an AM -
space (respectivelyd L-space). Moreover, ifX is an AL-space, thenX* is a
Dedekind completel M -space with unit* defined by

X' 3 e (@) = |log | = =]l

for z € X (thuse* coincides with the norm of on the positive cone). Moreover,
if X is anAM-space with unit, thenX** is also anA M -space with unit.

Any AM-spaceX with unit e can be equivalently normed by
|#]loc = inf{A > 0; [a] < Xe}

(see, e.g., [3, p. 188]). In this norm the unit ball¥fcoincides with the order
interval [—e, e]. On the other hand, any Banach lattice contalidg-spaces with

unit. Precisely speaking, [3, Theorem 12.20], the principal ideal generated by any
element; € X with the norm

[£]loe = inf{A > 05 |a| < Aful}, (35)

becomes ami M -space with unifu|, whose closed unit ball coincides with the
order interval—|u/, |ul].

The following results give the full characterisation4f.- and AM - spaces.

Theorem 12 [3, Theorem 12.26] A Banach lattice is atl-space if and only if
it is lattice isometric to an’; (£2) space.

Theorem 13 [3, Theorem 12.28] A Banach latticE is an AM-space with unit
if and only if it is lattice isometric to somg&(£2) for a unique (up to a homeomor-
phism) compact Hausdorff spafe In particular, X is an AM-space if and only
if it is lattice isometric to a closed vector sublattice of4<?) space.

34



We provide a brief information about the main parts of the proof of the latter
theorem.

Proof. The compact space turns out to be

Q = {z" € By ; 2" extr. p. of By with [[2"|| = [|z*(e)|| = 1}
= {2" € B{,; 2" lat. hom. with [|z”|| = ||2"(e)|| = 1}.

Here, B is the unit ball in the dual space and extreme points of a set are under-
stood as points which do not belong to any proper segment with endpoints in this
set. Establishing this equality is a difficult part of the proof. It follows thas
non-empty (by Krein-Milman theorem) and weaklyompact. Thust2 equipped
with the weak topology will be our compact topological space. koe X we
define the mapping

(Tx)(z") =<a*, 2>, % €.

It can be proved thal’ is a norm preserving lattice isomorphism frakh into
C(Q2). Since(Te)(x*) = z*(e) = 1 forall z* € Q, T(F) is closed and separates
points of2, it follows from the Stone-Weierstrass theorem thar) = C(£2). O

Using the last theorem, we see that each Banach lattice ’locally’ is a lattice
isomorphic toC'(£2). More precisely, gived < u € X we take the principal ideal
E,, which can be converted into ah)/-space normed by (35). This norm is not
equivalent to the norm iX. However, if we have a bounded operator defined
on X, then the transferred operator 61€2) will be again a positive everywhere
defined operator and thus bounded (by Theorem 15). Conversely, operators spe-
cific to C(2), such as multiplication or composition operators, can be transferred
to bounded operators ok, . If « is a quasi-internal point and the given operator
happen to be bounded in the original norm, then it can be extended by density
to the whole Banach lattice. We shall use this construction later to define the
modulus of an element of a complex Banach lattice and the signum operator.
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3.3 Positive Operators

Definition 7 A linear operatorA from a Banach latticeX into a Banach lattice
Y is called positive, denoted by > 0, if Az > 0 foranyx > 0.

An operatorA is positive if and only if|Az| < A|z|. This follows easily from
—lz| <z < |x| so, if A is positive, then- A|z| < Az < Alz|. Conversely, taking
x > 0, we obtain) < |Az| < Alz| = Ax.

Positive operators are fully determined by their behaviour on the positive cone.
Precisely speaking, we have the following theorem (eg. [9, Theorem 2.64]).

Theorem 14 1f A : X, — Y, is additive, thenA extends uniquely to a positive
linear operator fromX to Y. Keeping the notatior for the extension, we have,
for eachx € X,

Ax = Az, — Ax_. (36)

Another frequently used property of positive operators is given in the following
theorem.

Theorem 15 If A is an everywhere defined positive operator from a Banach lat-
tice to a normed Riesz space, théms bounded.

Proof. If A were not bounded, then we would have a sequénge, .y Ssat-
isfying ||z, = 1 and|Az,|] > n% n € N. BecauseX is a Banach space,
x =Y n %, € X. Becausd) < |z,|/n* < z, we haveco > ||Az| >
|A(|zn]/n?)|] > ||A(x,/n?)|| > n for all n, which is a contradiction. O

36



A striking consequence of this fact is that all norms, under wiicis a Ba-
nach lattice, are equivalent as the identity map must be continuously invertible,
[3, Corollary 12.4].

Example 16 The assumption that in Theorem 15 is a complete space is essen-
tial. Indeed, letX be a space of all real sequences which have only a finite number
of nonzero terms. It is a normed Riesz space under the fji&fm= sup,{|z.|},
wherex = (z,),en. Consider the functional

f(x) = an

Itis a positive everywhere defined linear functional. However, taking the sequence

of elementx,, = (1,1,...,1,0,0,...), where0 appears starting from the+ 1st
place, we see thakx,|| = 1 and f(x,,) = n for eachn € N so thatf is not
bounded.

The set of all positive operators from a Banach latti€éo another Banach
lattice Y is a convex cone in the spagé X, Y'), thus it generates a natural order:
A < B wheneverdx < Bz for all x € X . This cone, however, in general does
not generate£(X,Y) (e.g., [3, Example 1.11]). The norm of a positive operator
can be evaluated by

[Al = sup |[|Az]].

x>0, ||lz[|<1
As a consequence, we note thadil< A < B, then||A|| < ||B||. Moreover,
it is worthwhile to emphasize that if there exigtssuch that| Ax| < K|z|| for
x > 0, then this inequality holds for any ¢ X.

Irreducible operators. An important class of positive operators areducible
operators We say that an operataet on a Banach lattic& is irreducible if{0}
and X are the only invariant ideals unddr We say thatd is strongly irreducible
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if Au is quasi-interior point for any, > 0. Strongly irreducible operators are
irreducible. Indeed, any closed ideal# {0} contains a positive point so that
Au € AE C E providedF is invariant. Sincedu is quasi-interior, this implies
E = X We shall return to this concept in Subsection 6.2.1.

Example 17 An important role in the following considerations is played by the
multiplication by thesignum operatar In function spaces the definition is obvi-
ous: givenu # 0 andf € C(2), we defineS,f = u|u|~'f. Clearly, in this
settingS, is a linear isometry satisfyingd, f| = | f|; its inverse isS;, wherex is
the complex conjugate of.

In general situation, we restrict our attentioniteuch thatu| is quasi-interior
point of X. In this case we define this operator 6, by passing to the rep-
resentatiorC'({2) and transferring back the signum operator defined aboveé.to
We note that in this setting), is still invertible and has the same properties as
in C(Q). By |S.f| = |f] we can extends, by density toX = E, preserving
invertibility.

It is possible to extend this definition to the case wheris no longer a quasi-
interior point but it will not be needed in what follows (see e.g. [38, p. 245].

3.4 Relation Between Order and Norm

Existence of an order in some seétallows us to introduce in a natural way the no-
tion of convergence. However, in general, sequences are not sufficient to properly
describe all related phenomena and thus we have to resort to nets.

We say that an ordered sAtis directedif any pair of elements has an upper
bound. Then, by @et (z,).ca in & setX, we understand a function from the
index setA into X.
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By a subnetwe understand a né3)scs such that for anyy € A there is
B € B such that for eaclls > 5’ > [ there isa’ > « such thatys = z,. A net
(Za)aea INn @ Nnormed spac& converges to some point € X if for any e > 0
there isa € A such that for anyr > o, we havel|z, — z|| < e. We write this as
Ty — z or explicitly limyea 24 =  in norm.

Anet(z,)aca inan ordered seX is said to bedecreasindin symbolsz,, |) if
for anyay, ay € A with oy > o, we haver,,, < z,,. The notationc,, |  means
thatz, | andinf{z,; a € A} = z. Furthermore, we write,, |> = if the net is
decreasing and, > z for all a € A.

Symbolsz,T , z, T x, andz, 1< z have analogous meaning.

Using these definitions we can analyse convergence of increasing and decreas-
ing nets, where the limit is, respectively, the supremum or infimum of the net. If
(za)aea IS anet of arbitrary elements of, then we say that it isrder convergent
to z if there are netsyg)ses and(z,),er such thatysT z, z, | « and such that
forany3 € B and~y € I there isa € A such thatys < z, < z,. We write this
asz, — z. It can be proved, [1, p. 17], that we can take the g2&ndT to be
equal.

We note that a net in a partially ordered space can have at most one order limit.
Furthermore, if eithet,1 x or z, | z, thenz, = z. Conversely, ifz,1 (resp.,
T, ) andz, > z, thenz,1 = (resp.,z, | x). The proofs can be found in [9,
Examples 2.71 and 2.72]. One of the basic results here is

Proposition 2 Let X be a normed lattice. Then:

(1) The positive con&(, is closed.
(2) If X 3 2,7 andlim,ea x, = x in the norm ofX, then

x = sup{z,; a € A}
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3) If X > z, | andlim,ca x, = z in the norm ofX, then

r =inf{z,; a € A}

Proof. (1) BecauseX, = {z € X; z_ = 0} and lattice operatiolX > = —
x_ € X is continuous we see that, is closed.

(2) For any fixedx € A we have

%ienAl(xg —To) =T — Ty

in norm andeg — z, € X, for 3 > a so thatr — z, € X, foranya € A by (1).
Thusz is an upper bound for the nét, },ca. On the other hand, if, < y for
all a, then0 < y — 2, = y — z so that, again by (1), we haye> = and hence
x = sup{z,; a € A}.

The proof of (3) is analogous. O
Example 18 The converse of Proposition 2(2) is false; that is, we may havyer
but(z,).ca does not converge in norm. Indeed, consider (1,1,1...,1,0,0,...) €

l«, where 1 occupies only the first positions. Clearlysup,.xx, = x =
(1,1,...,1,...) but|x,, — X[ = 1.

This example justifies introducing a special class of Banach lattices.

Definition 8 We say that a Banach lattic€ has order continuous norm if for any
net(zq,)aca, To | 0 implies||z,|| | 0.

Before we give examples of Banach lattices with order continuous norm, we
state and prove basic properties of them.
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Theorem 19 [3, Theorem 12.9] For a Banach lattic¥, the statements below are
equivalent.

(1) X has order continuous norm;

(2) If 0 < z,1< x holds inX, then(z, ),cy is @ Cauchy sequence;
(3) X is o-order complete and,, | 0 implies||z,| — 0;

(4) X is an ideal inX**;

(5) For everya, b € X, the order intervalx; a < x < y} is weakly compact.

Moreover, every Banach lattice with order continuous norm is order complete.

Example 20 For 1 < p < oo, the Banach latticd ,(€2) has order continuous
norm. Indeed, lef,, | 0 almost everywhere. Thejy,,||” = [, f2du — 0 from the
dominated convergence theorem and the statement follows from Theorem 19(3)
asL,(Q?) is oc-order complete by Example 8.

Incidentally, this gives an independent proof thaf(2),1 < p < co are order
complete.

On the other handL..(?) is order complete by Example 8 but its norm is
not order continuous. To see this, considerdkadgebra> of measurable subsets
of 2 and letA be the subset of containing the sets which differ frof? by
sets of positive measure, directed by the relation of inclusion. Finally, take the
net (x«)aeca Of characteristic functions of sets froh. Thenyxqg — x, | 0 but
lIxa — xo| = 1 foralla € A.

The importance of Banach lattices with order continuous norm stems mainly
from property 2 of Theorem 19 which states that increasing sequences dominated
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in the order sense must necessarily converge in norm. There is an important subset
of this class of Banach lattices with a stronger property that increasing and norm
bounded sequences are norm convergent.

Definition 9 We say that a Banach lattice is a K B-space(Kantorovt—Banach
space) if every increasing norm bounded sequence of elemeRts obnverges
in norm in X.

Example 21 We observe that ifc,, T =, then||z,|| < ||z|| for all » € N and

thus anyK B-space has order continuous norm by Theorem 19. Hence, spaces
which do not have order continuous norm cannotB-spaces. This rules out

the spaces of continuous functiohs,and L..(£2).

To see that thé& B-class is indeed strictly smaller, let us consider the space
First we prove that it has order continuous norm. It is clearlyrder complete.
Let the sequencéx,,).cn, given byx,, = (z})ren, Satisfyx,, | 0. For a given
e > 0, we findk, such thatz}| < eforall k > k,. Becauséx,, ),y is decreasing,
we also havez}| < e forall & > ky andn > 1. Then, we findn, such that
|z}| < eforalln > ngandl < k < ky and combining these estimates we see
that||x,,|| < e forall n > ny so||x,| — 0.

On the other hand, let us again take the sequence (1,1,...,1,0,0,...)
where 1 occupies first positions. It is clearly norm bounded and increasing, but
it does not converge in norm to any elementgfHence ¢, has not got an order
continuous norm.

The next theorems characterize thids-spaces which appear in applications.

Theorem 22 [9, Theorem 2.82] Assume that is a weakly sequentially complete
Banach lattice. If(z,),.cn is increasing and ||z, ||).en IS bounded, then there is
x € X such thatlim,, .., z,, = x in X.
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The next result shows the same propertyAdr-spaces.

Theorem 23 Any AL-space is ak B-space.

Proof. If (x,,).en iS an increasing and norm bounded sequence, théndfor,, <
Tm, WE have

[zml = llzm = 2]l + (|22l

asz,, — z, > 0so that

[2m = @l = [[2mll = lznll = [zl = [zl

By assumption(||z,||)»en iS monotonic and bounded, and hence convergent, we
see thatz, ),cy is Cauchy. O

3.5 Complexification

Our main interest is in real operators on real Banach spaces. However, in some
cases, especially when we want to use spectral theory, we need to move the prob-
lem to a complex space. This is done by the procedure cadiewplexification

Definition 10 Let X be a real vector lattice. The complexificatiof: of X is
the set of pairgz, y) € X x X where, following the scalar convention, we write
(x,y) = x + iy. Vector operations are defined as in scalar case

1+ iy F a0+ 1y, = x1+l‘2+i(yl+y2)’
(a+if)(x+iy) = az—Py+i(Bz+ay).

The partial order inX is defined by

xo+ iy < x1 +iy; if and only if xp < 2y and yo = ;. (37)
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The operations of the complex adjoint, real part, and imaginary pattefz +iy
are defined through:

zZ = x4y =x—1y,

z+Zz

Rz = =z,
2
z—Zz

Sz = =
% 7

Remark 4 Note, that from the definition, it follows that> 0 in X is equivalent
toxr € X andx > 0in X. In particular, X with partial order (37) is not a lattice.

It is @ more complicated task to introduce a norm.p because standard
product norms, in general, fail to preserve the homogeneity of the norm.

First we introduce the modulus oYi. In the scalar case we obviously have

sup (acosf + Bsinf) = |a+if). (38)

0€[0,27]

Mimicking this, forx + iy € X we define

|z +iy| = sup (xcosf+ ysinh).
0€[0,27)

It can be proved that this element exists. This follows because elements over
which we take the supremum belong to the principal ideal generatéd hy|y|

and, as we noted when discussifg/-spaces, such an ideal is an AM-space with
unit|z| 4 |y| and thus it is lattice isometric to som&s2). ForC(£2) the existence

of |z + iy| is proved pointwise by the argument leading to (38).

Such a defined modulus has all standard properties of the scalar complex mod-
ulus, [2, Problem 3.2.2]: for any, 21, 2o € X and\ € C,
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(@)|z| > 0and|z| = 0ifand only if z = 0,
(0) [Az| = [Al2],

(©) |21 + 22| < |z1] + |22 (triangle inequality),

and thus one can define a norm on the complexificakiprby
12lle = llz + iylle = [l|lz + iyl]l. (39)

As the norm|| - || is a lattice norm, we havgz ||. < |22
and|| - ||. becomes a lattice norm oXic.

«» Whenevelz| < |z

Definition 11 A complex Banach lattice is an ordered complex Banach space
that arises as the complexification of a real Banach latticeaccording to Defi-
nition 10, equipped with the norm (39).

We extendA to X according to the formula
Ac(x +iy) = Az + 1Ay,

and observe that ifl is a positive operator between real Banach latti€esndY
then, forz = = + iy € X¢, we have

(Azx)cos @ + (Ay)sinf = A(x cosf + ysinf) < Alz|.
thereforel A z| < A|z|. Hence for positive operators
[Acllc = [IA]l. (40)

There are examples, whelfd || < || Ac||.-

Note that the standard,(2) and C(€2) norms are of the type (39). These
spaces have a nice property of preserving the operator norm even for operators
which are not necessarily positive, see [9, p. 63].
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Example 24 Any positive linear operatorl on X is a real operator; that is,
A: X — X. Infact, letXs > x = x, — z_. By definition, Az, > 0 and
Ar_ > 0s0Ax,,Ax_ € X andthusdz = Az, — Az_ € X.

Remark 5 If for a linear operatord we prove that it generates a semigroup of say,
contractions, inX, then this semigroup will be also a semigroup of contractions
on X, hence, in particularA is a dissipative operator in the complex setting.

Due to this observation we confine ourselves to real operators in real spaces.

3.6 Series of Positive Elements in Banach Lattices

In this subsection we discuss two results which are series counterparts of the dom-
inated and monotone convergence theorems in Banach lattices.

Theorem 25 Let(z,(t)).en be family of nonnegative sequences in a Banach lat-
tice X, parameterized by a parametee 7' C R, and lett, € T.

(i) If for eachn € N the functiont — z,,(¢) is non-decreasing and/m xn(t) =
t to
z, In norm, then

e}

T P “

n=0

irrespective of whether the right hand side existsXnor || 3 z,|| =

n=0
N
sup{|| >_ z.|l; N € N} = oco. In the latter case the equality should be
n=0
understood as the norms of both sides being infinite.

(ii) If tlir? x,(t) = z,, in norm for eachn € N and there exist$a,, ) ey such that
—10
zn(t) < a, foranyt € T,n € Nwith > |ja,| < oo, then(41) holds as
n=0

well.
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[e.°]

Remark 6 Note that if X' is a i B-space, therim, ~, Y z,(t) € X implies
n=0

convergence op_ >, z,. In fact, sincez,, > 0 (by closedness of the positive
cone), N — S°N =z, is non-decreasing, and hence eithef® ,z, € X, or

| >0 o znl| = oo, and in the latter case we haHrh‘mt/to > xp(t)
n=0

‘:OO.

3.7 Spectral Radius of Positive Operators

Let A € £(X). First we note that that the peripheral spectiayn 1), see (22),
is non-empty. Alsoy(A) € {|A]; A € o(A)}. This follows from the compactness
of o(A).

As a more serious application of the theory of Banach lattices, here we prove
that if A is a positive operator, then its spectral radius is an element of the spectrum
of A; thatis,r(A) € o(A). This, and related, results are usually referred to as the
Frobenius-Perron theorem, after the authors of the matrix versions of them.

First we note that we can carry the considerations in the complexification of
X, if necessary. Since all operators are positive, the operator norms in the real
lattice and its complexification are equal, see (40) and we shall not distinguish
them in the proofs.

Theorem 26 Letr(A) be the spectral radius of a positive operatdon a Banach
lattice X. Thenr(A) € o(A).

Proof. Let \, = r(A) + 1/n, then), € p(A) for anyn. Since),, — r(A). To
show that'(A) € o(A), it suffices, by Theorem 3, to shdwn,, ., [|R(\,, A)|| =

Q.

Since the peripheral spectrum is non-empty,det o(A) with || = r(A)
and defineu,, = a\,/|al. We haveu,, € p(A) andp, — « so that, invoking
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Theorem 3 againlim,, . || R(un, A)|| = o0o. Next, for eachn we pick a unit
vectorz, satisfying

1
1B (pins A)zall = 51 B pn, Al

Using the series representation of the resolvent (17) we easily infer
[R(A, A)z| < R(|A], A)z]
so that| R(j,, A)z,| < R(\,, A)|z,| and consequently

1
IR, | 2[R, Alzalll 2 [ Blpns A)zall 2 5[ Rn, Al

which proves the thesis. O

Theorem 27 If A : X — X is a compact positive operator on a Banach lattice
X withr(A) > 0, thenr(A) is an eigenvalue with positive eigenvector.

Proof. Sincer(A) > 0, by Theorems 26 and 6 it is an eigenvalue. As in the
proof of the previous theorem, we pit = r(A) + 1/n so that\,, | r(A) and
|IR(A\n, A)|| — oo asn — oo. Furthermore, for each there isz,, with ||z,|| = 1
satisfying

IR, A)zall 2 1RO Al
We define
R\, Az,
RO, A)za|l
and note that,, is a positive unit vector.

T

From
Az, —r(A)zx, = (N, —7r(A)z, + Az, — Apzy,
_ A
no|[R(An, A)za|
we obtain

|Az, — r(A)z,|| = 0, n— co.
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SinceA is compact, the sequentdz,, ),y has a convergent subsequence which

we denote by(Ax,,).en @gain. Usingr(A4) > 0 and||z,|| = 1, we find from
the above that:,, converges to a positive (unit) vector This vector satisfies
Az =r(A)x. O

Corollary 1 The thesis of Theorem 27 remains valid if the positive operatisr
only power compact.

Proof. If r = r(A) > 0 and A is power compact, then from the Spectral Mapping
Theorem we havel*z = r*z for somez > 0. Puttingy = ¢ 7/ A%~ 1~iz we
find thaty > 0 (from positivity of A,z andr) and

Ay —ry = Abz —rkz = 0.

Remark 7 The assumptiom(A) > 0 is crucial in infinite dimensional case (in
finite dimension convergence of a subsequencerpf,cy is obvious. Possibly
the best result ensuring this was given by de Pagter, [42] and [1, p.359]. It reads
that an irreducible power compact positive operator has a positive spectral radius.

4 First semigroups

The semigroup theory is concerned with methods of finding solutions of the Cauchy
problem.

Definition 12 Given a complex Banach space and a linear operatavith D(.A),
ImA C X and giveny, € X, find a functionu(t) = u(t, uo) such that

1. u e C°0,00)) N C*((0, 00)),
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2. foreacht > 0, u(t) € D(A) and

u'(t) = Au(t), t >0, (42)
3.
Jim u(t) = uo (43)

in the norm ofX.

A function satisfying all conditions above is called the classical (or strict) solu-
tion of (42), (43).

If the solution to (42), (43) is unique, then we can introduce a family of operators
(G(t))i>0 such thatu(t,uy) = G(t)ug. ldeally, G(t) should be defined on the
whole space for each> 0, and the functiont — G(t)u, should be continuous
for eachuy € X, leading to well-posedness of (42), (43). Moreover, uniqueness
and linearity of A imply that G(¢) are linear operators. A fine-tuning of these
requirements leads to the following definition.

Definition 13 A family (G(t));>o of bounded linear operators oX is called a
Cp-semigroup, or a strongly continuous semigroup, if

() G(0) = I;
(i) G(t +s) = G(t)G(s) forall t,s > 0;

(iii) lim; o+ G(t)r = x foranyx € X.

A linear operatorA is called the (infinitesimal) generator 0f7(¢));> if

Ap — lig CRT—2

=, (44)

with D(A) defined as the set of all € X for which this limit exists. Typically the
semigroup generated by is denoted byG 4()):>o.
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If (G(t))>0 is aCy-semigroup, then the local boundedness and (ii) lead to the
existence of constanf¥/ > 0 andw such that for alt > 0

1G] x < Me“". (45)

We say thatd € G(M,w) if it generateg G(t)):>o Satisfying (45). Theype or
uniform growth boungdu,(G) of (G(t)):>o is defined as

wo(G) = inf{w; there is M such that (45) holds}. (46)

From (44) and the condition (iii) of Definition 13 we see thatlifs the generator
of (G(t))>0, then forz € D(A) the functiont — G(t)z is a classical solution of
the following Cauchy problem,

Ouu(t) = A(u(t)), t>0, (47)
tlirﬂqr u(t) = =x. (48)

We note that ideally the generatdrshould coincide with4 but in reality very

often it is not so. In fact, a large part of the theory discussed here is concerned
with finding a relation betweenl and its realisatiord which generates a semi-
group. Such problems are addressed later. However, for most of this section we
are concerned with solvability of (47), (48); that is, with the case wheai (42)

is the generator of a semigroup.

We noted above that for € D(A) the functionu(t) = G(t)z is a classical
solution to (47), (48). For € X \ D(A), however, the function(t) = G(t)x is
continuous but, in general, not differentiable, hyfA)-valued, and, therefore, not
a classical solution. Nevertheless, it follows that the integfal = fot u(s)ds €
D(A) and therefore it is a strict solution of the integrated version of (47), (48):

ov = Av+zx, t>0
v(0) = 0, (49)

or equivalently,

u(t) = A/u(s)ds + . (50)



We say that a function satisfying (49) (or, equivalently, (50)) israild solution
or integral solutionof (47), (48).

Proposition 3 Let (G(t)):>o be the semigroup generated by, D(A)). Then
t — G(t)z, x € D(A), is the only solution of (47), (48) taking valuesiinA).
Similarly, forz € X, the functiont — G(t)x is the only mild solution to (47),
(48).

Thus, if we have a semigroup, we can identify the Cauchy problem of which
it is a solution. Usually, however, we are interested in the reverse question, that is,
in finding the semigroup for a given equation. The answer is given by the Hille—
Yoshida theorem (or, more properly, the Feller—Miyadera—Hille—Phillips—Yosida
theorem).

4.1 Around the Hille-Yosida Theorem

Theorem 28 A € G(M,w) if and only if

(a) Ais closed and densely defined,

(b) there exist\ > 0,w € R such thafw, c0) C p(A) andforalln > 1, > w,

M

IO =471 < 5=

(51)

If A is the generator ofG(t)):>o, then properties (i) and (ii) follow from the
formula relating(G () );>0 with R(\, A): for A > wy(G), wherew,(G) is defined
by (45), then\ € p(A) and

[e.9]

R\ A)x = / e MG (t)xdt (52)
0
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isvalid forallz € X.

Another widely used formula relating with (G(¢)):>o is:
t N\ " n
G(t)z = lim (1 - —A) z = lim (@R (E,A>> x (53)
foranyz € X, and the limit is uniform int on bounded intervals.
As we noticed earlier, a given operatot, D(A)) can generate at most one

Cp-semigroup. Using the Hille—Yosida theorem we can prove a stronger result
which is useful later.

Proposition 4 Assume that the closufel, D(A)) of an operator(A, D) gener-
ates aCy-semigroup inX. If (B, D(B)) is also a generator such thd|, = A,
then(B, D(B)) = (A, D(A)).

Without the assumption that the closuredis a generator there may be infinitely
many extensions of a given operator which generate a semigroup: consider the
semigroups generated by the realizations of the Laplacian subject to Dirichlet,
Neumann, or mixed boundary conditions — all the generators coincide if restricted
to the space of’;° functions.

Example 29 Let X = L,(I), where! is eitherR or R.. In both cases we can
define aleft) translation semigroupy

(G@t)f)(s) = f(t+s), feX, ands,tel. (54)

The semigroup property is obvious. Next, for each 0, we have

GO = [ 15+ spas< [ Irwrar =171
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where, in the casé = R, we have the equality. Hen¢ér(t)):>, satisfies
IGO)I <1, (55)

and so(G(t))¢>o is a semigroup of contractions.

To prove that{G(t));>o is strongly continuous, we use an approximation ap-
proach. Firstlet € C5°(1). Itis uniformly continuous (having compact support)
hence for any > 0 there isé > 0 such that for any € [ and0 < t < ¢,

6t +5) — o(s)| <e.
Thus,
/|¢t+5 o(s)|Pds < Mye?,

where M, is the measure of some fixed neighbourhood of the suppastooi-
taining supports of alk — ¢(t + s) with 0 < ¢t < 6. Because’§°(I) is dense in
L,(I)forl < p < oo, (55) allows us to use Banach-Steinhaus thorem to claim
that(G(t)):>o is a strongly continuous semigroup.

It follows that there is a measurable representation) — [G(t)f](s) of
G(t) f which is measurable dR; x [ and such that the Riemann integralof-
G(t) f coincides for almost every € I with the Lebesgue integral ¢6 () f](s)
with respect ta. Note that in this case it follows directly as the composition of
a measurable function witft, s) — ¢ + s is measurable, but in general it is not
that obvious. Hence, from now on we do not distinguish between a vector-valued
function and its measurable representation.

Let us denote by A, D(A)) the generator ofG(t)):>o and letg := Af €
L,(I). Thus,A,f := h™Y(G(h)f — f) — g in L,(I). Taking a compact interval
la,b] C I, we have

b

/Ahf —gs

/ Anf(s) — g(s)lds
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< b= al"UAwf = gllL,m),

SO
b

lim [ A ' (f(s+h)— f(s))ds = /g(s)ds.

h—0t
a

On the other hand, we can write

/bhl(f(s +h) = f(s))ds = h™" 7hf(8)d5 —h7 7hf(8)d8,

where the terms are the difference quotients of the fungf{)oﬁ(s)ds att = a and

t = b, respectively. Becausg is integrable on compact intervalﬁt; f(s)ds €
AC(I) (absolutely continuous) and its derivative is almost everywhere given by
the integrandf. By redefiningf on a set of measure zero, we can write

T

f(x):f(a)+/g(s)ds, xel.

a

Thus, we see that C 7', whereT' is the maximal differential operator o, (/).
SinceT is invertible, similarly to Proposition 4 we obtai = T.

We note that the identification of the generator of the translation semigroup
can be done by finding the resolvent through the Laplace transform (52).

4.2 Dissipative Operators

Let X be a Banach space (real or complex) a&ndbe its dual. From the Hahn—
Banach theorem, for evenyc X there exists* € X* satisfying

<a’,2>= [|z]|* = [|l="|.
Therefore theluality set

J(2) = {2" € X*; <z 2>= [z|* = ||2*[|*} (56)
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is nonempty for every € X.
Definition 14 We say that an operatdrA, D(A)) is dissipativeif for everyz €
D(A) there isz* € J(x) such that

R <z*, Ax><0. (57)

An important equivalent characterisation of dissipative operators, [43, Theo-
rem 1.4.2], is that! is dissipative if and only if for alh > 0 andz € D(A),

AL = A)z]] = Al (58)

We note some important properties of dissipative operators.
Proposition 5 [26] If (A, D(A)) is dissipative, then
(i) Im(A — A) = X for some) > 0 if and only if Im(A — A) = X for all

A > 0.

(i) A is closed if and only ifm(A — A) is closed for some (and hence all)
A > 0.

(iii) If A is densely defined, thefi is closable andA is dissipative. Moreover,
Im(\ — A) = Im(\] — A).

Combination of the Hille—Yosida theorem with the above properties gives a
generation theorem for dissipative operators, known as the Lumer—Phillips theo-
rem ([43, Theorem 1.43] or [26, Theorem 11.3.15]).

Theorem 30 For a densely defined dissipative operater, D(A)) on a Banach
spaceX, the following statements are equivalent.
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(a) The closured generates a semigroup of contractions.

(b) Im(A — A) = X for some (and hence alf > 0.
If either condition is satisfied, thes satisfies (57) for any* € J ().

In particular, if we know thatd is closed then the density din(Al — A) is
sufficient for A to be a generator. On the other hand, if we do not know a priori
that A is closed thenm (Al — A) = X yields A being closed and consequently
that it is the generator.

Example 31 If (A, D(A)) is a densely defined operator lhand bothA and its
adjoint A* are dissipative, thed generates a semigroup of contractionsinin
fact, becausel is dissipative and closedm (I — A) is closed. Iflm (I — A) # X,
then for someé) # z* € X* we have

0 =<z*,z — Az>=<a* — A z*, 2>

for all z € D(A). Becaused is densely defined;* — A z* = 0 and becausd”

is dissipative* = 0. Hencelm (I — A) = X and A is the generator of a dissi-
pative semigroup by Theorem 30. In particular, dissipative self-adjoint operators
on Hilbert spaces are always generators.

4.3 Nonhomogeneous Problems

Consider the problem of finding the solution to:

du
%G) = Au(t)+ f(t), 0<t<T

u(0) = up, (59)

where0 < T < oo, A is the generator of a semigroup, afid (0,7) — X
is a known function. For to be a continuous solutiorf, must be continuous.
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However, this condition proves to be insufficient. We observe thastifi classical
solution of (59), then it must be given by

t

u(t) = G(t)ug + / G(t — s)f(s)ds. (60)

0

The integral is well defined even jf € L,([0,7], X) andu, € X. We callu
defined by (60) themild solutionof (59). For an integrablg suchu is contin-

uous but not necessarily differentiable, and therefore it may be not a solution to
(59). The following theorem gives sufficient conditions for a mild solution to be
a classical solution (see, e.g., [43, Corollary 4.2.5 and 4.2.6]).

Theorem 32 Let A be the generator of &-semigroupG(t)):>o andz € D(A).
Then (60) is a classical solution of (59) if either

(i) f e CY([0,T], X), or

(i) f € C([0,T],X) N Li([0,T], D(A)).

The assumptions of this theorem are often too restrictive for applications. On
the other hand, it is not clear exactly what the mild solutions solve. We present
here a result from [26, p. 451] which is particularly suitable for the applications.

Proposition 6 A functionu € C(R,, X) is a mild solution to (59) withf €
Li(R., X) in the sense of (60) if and onlyjfu(s)ds € D(A) and

u(t) = uo + A/u(s)ds + / f(s)ds, t > 0. (61)
0 0
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4.4 Long time behaviour of semigroups

It is important to note that the Hille—Yosida theorem is valid in both real and
complex Banach spaces with the same formulation. Thdsisfan operator in a
real Banach spac¥, generating a semigroug:(¢)):>o, then its complexification
will generate a complex semigroup of the same type in the complexification

of X. This allows us to extend (52) to complex values\oPrecisely, the integral

in (52) is absolutely convergent f&@\ > wy(A). Moreover, iterations of the
resolvent give the following formula,

(=)t

ROAN' = e ROLA)

o

1

- —5 / L MG (t)dt, (62)
0

valid for allz € X.
4.4.1 Story of four numbers
Formula (62) yields the estimate

M
(RA = wo(G))™

IR, A" < RA > wo(G). (63)
An immediate consequence of the above considerations is that the spectrum of a
semigroup generator is always contained in a left half-plane, given by the spectral
bound

s(A) = sup{R\; A € 0(A)}, (64)

defined in (21). For semigroups generated by bounded operators and, in particular,
by matrices, Liapunov’s theorem, see e.g. [26, Theorem 1.2.10], states that the
typew,(G) of the semigroup is equal tg A). This is no longer true for strongly
continuous semigroups in general; see for example, [43, Example 4.4.2] or [38,
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Example A-111.1.3], where it is shown that the translation semigri@up) f](s) =
f(t + s) on the spaceX = L,(Ry) N E, whereFE is the weighted spacg :=
{f € L,(R,),e*ds}, whose generatad is the differentiation operator, satisfies
wo(G) = 0ands(A) = —1.

That the typeuy(G) might be a rather crude estimates§fi) can be expected
because the former is determined by the absolute convergence of the Laplace in-
tegral and the Laplace integral may converge as an improper integral in a possi-
bly larger half-planeR\ > abs(G), where byabs(G) we denoted the abscissa
of convergence (of the Laplace integral treated as an improper integral). That,
abs(G) = inf{\ € C} for which

Byz := lim [ e MG(t)zdt (65)
0
exists for allz € X. Moreover, any such\ satisfiesA € p(A) and Bz =
R\, A)xforallxz € X.

Thus at this moment we only have the obvious estimate
s(A) < wp(G) < +o0. (66)

We can prove, however, thabs(G) controls the growth of classical solutions
of (47), (48), that is, of the solutions emanating frame D(A). To make this
concept precise, we define tgpwth boundv; (G) by

wi(G) = inf{w; thereis M such that |G(t)z| < Me“*||z| p(a),
x € D(A),t > 0}, (67)

Clearly,w; (G) < wy(G). The following result is true.

Proposition 7 For a semigrougG(t)):>o we have

w1 (G) = abs(G). (68)
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4.4.2 Fine structure of the spectrum ofA and long time behaviour of(G(%)):>o

One of the most important questions in the theory of strongly continuous semi-
groups is to determine the long time behaviour of a semigroup through spectral
properties of its generator.

Spectral Mapping Theorem for semigroups If (G(¢)):>o is generated by a
bounded operatad, thenG(t) = exp tA and the the Spectral Mapping Theorem
(23) gives

o(G(t)) = et (69)

Hence
etw(G) — T’(G(t)) — 61Es(A)

and thus, in particular, (69) yields the Lyapunov theorem for dynamical systems
generated by bounded operators. However, we have seen tla;-f@migroups

the spectrum of the generator does not fully determine the spectrum of the semi-
group; that is, the Spectral Mapping Theorem (23) fails in this case.

Note that while the number zero can be in the spectrum of a semig&aiip >
(e.g. for eventually compact semigroups), it cannot be obtained from any finite
spectral value ofd through (69). Thus, we shall restrict our considerations to
o(G(t)) \ {0}. Furthermore, validity of (69) for a giveh € ¢(G(t)) means that
there exist: € Z such that

p+2kmi/t € o(A) with X\ = e, (70)

We note the following general result, [26, Theorems 6.2 and 6.3]

Theorem 33 Let(G(t)):>o be the strongly continuous semigroup generated by
Then
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Ultrapowers in the context of semigroups As we noted above, the main ob-
stacle for validity of the Spectral Mapping Theorem is caused by the approximate
spectrum. We have introduced a method of converting the approximate spectrum
into the point spectrum in Paragraph 2.2.2 and it is natural to ask whether it can
be used to alleviate the encountered problems.(G¢t));~o be a strongly con-
tinuous semigroup. As noted in Par. 2.2.2, for each 0, the bounded operator

G(t) extends th/(\t) on X preserving norms, spectra etc. Unfortunately, the fam-
ily (5(7))20 is strongly continuous if and only if the generatédof (G(t)):>¢ is
bounded. The problem is created at the first step of construction as the extension
of (G(t))1>0 10 o (X), denoted by G(t));o,

G(O)[(xn)nen] = (G(1),,)nen
is not strongly continuous.
To get around this difficulty, we proceed as in the definition ofthe-dual
and first define the subspacelgf( X) by
(X)) = {(@n)nen € loo(X); 1 (|G ()20 — ]| = 0,
uniformly in n}

Clearlyl$ (X)is (G(t)):o invariant and it turns out that the restriction(6¥(¢) )0

to this subspace is strongly continuous. Moreover, since a strongly continuous
semigroup is uniformly continuous on compact subsets, we see:¢h&) C

I (X). Then, instead oK, we consider the quotient space

X9 =15(X)/co(X) (71)
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and define the semigrou(t)(t)),>o as the canonical projection 66 (¢)(t));o
to XC:
G()[(wn)ners + co(X)] = (G(1)x,, )nen + co(X) (72)
for (z,)nen € 19 (X). Again, with the canonical injectioX > x — (z,2,...) €
X¢ the operators(t) become extensions @f(t) for anyt > 0 and restrictions
of C?(\t) defined onX. Using standard results for quotient semigroups, we find
that the generatad of (G(t)(t)):>o on X € is given by

A[<xn)n€N + co(X)] = (Azp)nen + co(X) on
D(A) = {(Zn)nen + co(X); (Tn)nen € D(A),
(Tn)nen, (A )nen € X}

Unfortunately, there is a price to pay: in general it is not true #ét(t)) =
o(G(t)). This apparent contradiction with Theorem 5 is explained by the obser-
vation that the later theorem would refer@) and not toG(¢). For instance, an
approximate eigenvector f6#(¢) may fail to satisfy the condition defining (X)
and thus fail to be an approximate eigenvectoé()i). Of course, if an approxi-
mate eigenvectafr, ey satisfies(z, )nen C 15 (X), theni = (2, )nen + co(X)
it is an eigenvector oﬁ(t). We will see one way of getting around this difficulty
below.

Eventually uniformly continuous semigroups If a semigrougG(t)):>o is con-
tinuous in the uniform operator topology for> 0, then is generator is bounded
and we can use classical Lyapunov theorem. Howeveég (f));~, is uniformly
continuous fort > 0 (immediately uniformly continuousr even fort > ¢, for
somet, > 0 (eventually uniformly continuolisthen the situation becomes non-
trivial. We note that analytic semigroups and eventually compact semigroups are
eventually uniformly continuous.

To prove the latter statement assume th@)) is compact and let, s > .
Sincet — G(t)x is uniformly continuous fox: in compact sets (Banach-Steinhaus
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theorem) andx(t,) B, is relatively compact®; is the unit ball), we have that

Im(G(t)r — G(s)r) = im(G(t — tg) — G(s — to))G(to)x

t—s t—s

converges uniformly to zero for € B; giving uniform continuity of(G(¢)):>o
fort > t,.

Theorem 34 If (G(t))+>0 is an eventually uniformly continuous semigroup with
generatorA, then
o(G())\ {0} = 7.

Proof. For the proof it suffices to show that(G())\ {0} C e?«(). Furthermore,
it is enough to consider € o,(G(t1)) for somet; > 0. In fact, any othen and
t, can be reduced to this situation by considering the rescaled semigroup

(S)(1))iz0 = (e "MUG(tty/11)) =0

with generatoB = (¢, A — In \) /t;. The spectral properties affor S(¢,) are the
same as oh for G(t,) as

Glts) — M = M(S(ty) — I).

Take(fn)nen € 04.(G(t1)); thatis|| f|| = 1 with
Jim |G (1) fr = full = 0.

Let (G(t))+>0 be uniformly continuous fot > t,. We choosé: € N such that
kt; > to, and defingy,, = G(kt,) f,. Then we have

T lgnll = T ([G(E)" Full = Jim (17, = 1
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as well as
Tim (|G (t1)gn — gall < lim. IG(E)|*|G(t1) fr — ful =0,

S0 (gn)nen @lso is an approximate eigenvector with approximate eigenvalue 1.
However,(G(t)):>o is uniformly continuous on sets of the for@(t,)U whereU

is a bounded set. In particuld((t)).>¢ is uniformly continuous oftg,,),cn and
henceg = (g,)nen IS @n element in the semigroup ultrapower’.

By comments at the end of Example 4.4i2is an eigenvector ofG/(t)),>o
with eigenvalue 1 hence, by the Spectral Mapping Theorem for the point spectrum,
there is an eigenvalurin/t; of A for somen € Z. Sinces(A) = o(A), we
obtain the thesis. O

Another theorem which plays an important role in analysis of long time be-
haviour of semigroups is

Theorem 35 If (A, D(A)) is the generator of an eventually uniformly continuous
semigroup(G(t)):>o0, then, for everyp € R, the set{\ € o(A); R\ > b} is
bounded.

Proof. Fix arbitrarya > wo(G). The proof consists in showing that for every
v > 0 there existy > 0 such that for any > r, we havedist(a + ir,o(A)) > 7.
Indeed, if we assume the contrary, then there existsch that for any there is

r > ro With dist(a + ir,0(A)) < ~ which, in turn, shows that(A) extends to
infinity in the stripa — v =: b < R\ < a, showing its unboundeness. Further,
using (18), we find

: : 1  \ny—1/n
dist(a +ir,0(A)) = SR T i A) > ||R(A +ir, A" 7Y

so we have to prove that for amy> 0 there isry andn such that for all- > r, we
have||R(\ + ir, A)"||'/™ < e.
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The proof uses the representation
n+1 1 —(a+zr Ytqn
R(a+ir, A) = t"G(t)xdt.
7’L
0

We use the fact that — ||G(t)| is measurable. IfG(t)):>o is uniformly con-
tinuous fort > t;, then the domain of integration is split into, ¢,], [¢1,?2] and
[t2, 00). The first integral can be made uniformly small by sufficiently laigehe
last by sufficiently large, and the for the integral ovet,, t,] for fixed ¢, we use
uniform continuity of the integrand and the Riemann-Lebesgue lemma to show
that it is small for sufficiently large. O

4.4.3 Bad spactrum — chaos

Though our main interest lies with linear dynamical systems, the general frame-
work discussed here applies to a much larger class of dynamical systems.

Let the spacéX, d) be a complete metric space afte(t)).~o be a continuous
dynamical system oX with generatord. By O(p) = {G(t)p}+>o we denote the
orbit of (G(t)):>o originating fromp.

We say thatG(t)),>¢ istopologically transitivef for any two non-empty open
setsU, V C X thereisty > 0 such thatG(t)U NV # .

A periodic pointof (G(t)):>o is any pointp € X satisfyingG(7)p = p for
somer > 0.

Definition 15 [23] Let X be a metric space. A dynamical systg#{t));>o in X
is said to be (topologicallyghaoticin X if it is transitive and its set of periodic
points is dense itX .
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Devaney'’s definition is related to the property called hypercyclicity: a dynamical
system(G(t)):>o is calledhypercyclicif for somez € X we have

{G)r}iz0 = X;
that is,(G(t)):>o has a dense orbit iX .

Hypercyclicity is equivalent to topological transitivity. Thus, Devaney’s def-
inition means thatG(t)).>¢ is chaotic if it has an orbit dense ik and its set of
periodic points is dense.

Remark. Hypercyclic (and thus chaotic) dynamical systems can only occur
in separable spaces.

Positive criteria The classical criterion for chaoticity of linear semigroups is
given in the following theorem.

Theorem 36 [22] Let X be a separable Banach space andAdbe the generator
of a semigrougG(t)):>o on X. Suppose that

1. The point spectrum of, ¢,(A), contains an open connected $étsuch that
UnNiR #0;

2. There exists a selectidnh > A — z(\) of eigenvectors afl, that is analytic in
U;

3. Span{zx(N\), A\ e U} = X.

Then(G(t)):>o is chaotic.

The proof uses the observation thi&t(t));~, is hypercyclic if

X = {reX: lim G(t)r=0)
X = {w e X; V€>oz|xeX,t>0“xH <€
and ||G(t)z — w|| < €}
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are dense itX'. Thus, if also the set of periodic poins, is dense, thef(iG(t));>o
is chaotic. Condition 3. is used through the following argument!’If- U with
an accumulation point ity and® € X* satisfy< ®, z(\) >= 0for A € U’, then
from the principle of isolated zerds;(\) =< ®,z(\) >= 0in U which by Con-
dition 3. is possible only if® = 0. This in turn shows thatpan{xz(\),A € U’} =
X. Now, itis easy to see that the séts = UN{\, R\ < 0}, U, = UN{A\, R\ >
0},Up = U N {\RA = 0,3\ isrational} have accumulation points ify.
Moreover Span{z(\),\ € U_} C X,, by z(\) = G(t)e *xz()\) we see that
Span{z(\),\ € Uy} C Xo andSpan{z(X), X € Uy} C X, so that if Condition
3 is satisfied X, X, and.X, are dense itk and thereforé¢G(t)),>o is chaoticl]

Proposition 8 If A is a closed operator irfX' and for some functiom(\) that is
analytic in an open connected détwe have

Az(\) = Az(N), (73)

then, denoting by, », then-th coefficient of Taylor's expansion of\) at Ay €
U, we have

Z =7y, = Span{a,,,n € No}

is independent ok,. Moreover, for anyJ/’ C U having an accumulation point in
U we have

Z = Span{zx(\), A € U'} = Span{z(\),\ € U}.

The proof is an essay about the identity
0=<® x()) >=> < 0,a, > (A=)
n=0

A\ A € U/, & € X*, and the principle of isolated zeros. 0J
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Theorem 37 [16] Suppose that conditions 1. and 2 of Theorem 36 are satisfied.
Then there exists an infinite dimensional closed subspaceX that is invariant
for (G(t)):>0 such that( G|y (t)):>o is chaotic.

The proof of this result uses the previous proposition to show that closed linear
spans of eigenvectors witR\ > 0, R\ < 0 andR\ = 0 are the same. Since

a closed linear span of eigenvectors of the generator is invariant w.r.t. the semi-
group, the theorem follows. O

The previous result justifies the following definition.

Definition 16 Suppos€G(t)):>o is a continuous dynamical system &n If there
exists a closed subspatewhich is invariant for(G(t)):>o such that

1. {G(t)x}>0 = Y for somex € Y, then we say thatG(t)):>o is sub-
hypercyclic;
2. (G(t))+=0 is chaotic inY’, then we say thai&(t)).>¢ is sub-chaotic

The subspack¥ is called, respectively, the hypercyclicity and chaoticity subspace
for (G(t))tzo

Negative criteria It is important to distinguish cases when the dynamical sys-
tem cannot be chaotic, even in a subspace.

For setsM ¢ X andN C X* denote

M+ = {feX"; <fx>=0Vrec M}
IN = {zeX; < f,x>=0Vfe N}
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Theorem 38 Let (G(t)):>o be a continuous linear dynamical generated.byn
a Banach spaceX, having an orbit dense in some subspafg C X. Then
the adjointA* of A and the dual dynamical systef@*(¢)).>o have the following
properties:

(i) Let0 # ¢ € X*. If {G*(t)¢p}+>0 IS bounded, them € X,
(ii) If ¢ is an eigenvector ofi*, theng € X2 .

In particular,(G(t))¢>o cannot be chaotic if

op(A") = 0.

The proof is based on the following observation. et & € X* be such that
||G*(t)®]| is bounded. Consider

<G ()P, x>=<D,G(t)z> .

Along a dense trajectoryG (t)xo }+>o (for a fixedz,) we can findx = T'(t.)zo

for which ||z|| < ¢ and so the right hand side can be made arbitrarily small.
This shows (modulo some limiting argument) tdats orthogonal to the span of
{G(t)zo}i>0. Similar argument works for (ii). O

Corollary 2 Let E(\) be the eigenspace corresponding\tand
E.= P E.
A€o (A*)

Then
Xch g J_E*-

Consequently, if
codim ‘E, < 400,

then there is no subspace &fin which (G(t)),>¢ is chaotic.
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These results can be used to rule out important classes of semigroups from being
hypercyclic.

Corollary 3 [22] Let (G(t)):>0 be a strongly continuous semigroup generated by
AinaBanach spac&’. Assume thatG(t)).>o is eventually uniformly continuous
and that the resolvent of, R(\, A) is compact. The(G(t)):> is not hypercyclic.

Indeed, a hypercyclic semigroup must have positive growth bayt@). Since
it is eventually uniformly continuouss(A4) = wy(A) > —oo by Theorem 34.
SinceR(\, A) is compact,R(\, A*) is also compact and, sineg¢A) > —oo, the
spectrum of4 is not empty and consists solely of eigenvalues. O

For instance, the diffusion semigroup on a bounded domain is analytic with
compact resolvent and thus cannot be chaotic.

Recent criteria

Theorem 39 [25] Let A be the generator of a strongly continuous semigroup
(G(t)):>0 On a separable Banach spaée Assume that there {3 := (w1, ws) C

R with x(€2) > 0 and a strongly measurable : 2 — X such thatAz(\) =
iAzx(A) for almost any\ € Q2 and

Span{z(\); A€ Q\ ¥} =X (74)

for any Q" C R with u(©2") = 0. Then(G(t)):>o is hypercyclic inX.

Remark. If = is continuous, then (74) can be replaced by

Span{z(\); A€ Q} =X (75)
and one obtains automatically th@k(¢));>, is chaotic inX.
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Proof. Note that: (a): is a non-zero function, and (b) using a scalar multiplier
we can assume thatis (Bochner) integrable.

The proof uses the Fourier transform

o0

o(r) = / ¢35 (s)ds

—00

with x(s) extended by zero outside if necessary. Denote

Y, = Span{g(R)} = Span{e(r); r € R}, (76)

By Riemann-Lebesgue theorem (see e.g. [26, Lemma G8}) Cy(R, X); that
is, limy,|~oc ¢(r) = 0. Let us fixr € R. Since

[G(t)e](r) = /ei(t+r)5m(s)ds,

—00

we see that
lim [G(t)¢](r) = 0.

t—o00

Thus,Span{¢(R)} C X,. Similarly,

wmzmw/aHmw@wzxwww>

—00

where||4)(r)|| can be made as small as we wish. Hertgein{¢(R)} C X.. The
last assumption is used to show that= X. Assume thatb € X* annihilates
Span{¢(R)}, then for anyr

0=<®,¢(r) >= / e’ < &, x(s) > ds

—0o0

which, by uniqueness of the Fourier transform means ¢hat< &, z(s) > is
zero almost everywhere. Now, singés) is only defined almost everywhere, to
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assertb = 0 we must assume that the property thatn{xz(Q2)} = X is stable
under changes of on sets of measure zero. With this assumption we obtain, in
particular, that

Span{p(R)} = X. (77)

Some generalizations A closer look at the proof above shows that actually we
have a stronger result:

Corollary 4 Let X be an arbitrary (not necessarily separable) Banach space. Let
all assumptions of Theorem 39 except (74) be satisfied anrdc(s) is a non-zero
function. Ther(G(t)):>o is hypercyclic inY,.

Let X be an arbitrary Banach space), ;1) be a measure space, afid Q2 —
X be a strongly measurable function. For any measur@bte €2 we define the
essential imagef U throughf defined as

f(Q)ess :={z € X5 p({s € U : [[f(s) —xl| <€}) #0,¥e >0},

Lemma 3 Let U be a measurable subset @f The essential image has the fol-
lowing properties:

(@) If w(U) > 0, thenf(U)ess N f(U) # 0. Consequently, the sgt of elements
x € U such thatf(z) ¢ f(U).ss Satisfiesu(2) = 0;

(b) If (U \ U") = 0, and f(U") C Span{f(U)ess}, thenSpan{f ([ )es} =
Span{f(T7)].

(€)Span{ f(U).ss} is separable.

Theorem 40 Let (G(t))>0 be aCy-semigroup generated by the operatdron
an arbitrary Banach spac&’. Assume that,(A) NiR =: i) # (), whereQ2 C R
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is measurable withu(€2) > 0, and that there is a (strongly) measurable function
x : Q — X such that) # x(\) € ker(ix — A) forany A € Q2. Then(G(t)):>o is
sub-hypercyclic, with the hypercyclicity spake := Span{z(2).ss}-

Corollary 5

X, = Span{Flz(-)|(r), r € R}}

whereF is the Fourier transform oA — z(\).

Corollary 6 Ifthereisaninterval C 2suchthate(l) C z(Q)ess, then(G(t))i>o
is subchaotic (with chaoticity space possibly smaller thaj.

Corollary 7 Under notation of Theorem 40, {8 = [a,b] and z(\) is weakly
(sequentially) continuous d, then(G(t)).>o is chaotic inX; = Span{z()}.

A counterexample It is often suggested that sufficiently many periodic solu-
tions leads to chaos. For linear systems, periodic solutions are the solutions cor-
responding to imaginary eigenvalues, thus Theorem 40 seems to be a step in right
direction. However, we have:

Example 41 ConsiderX = C,(R), the space of bounded continuous functions
with sup norm and translation semigrod@(t)):>o on X:

(GO f)(x) = ft+ ). (78)

Clearly,
IG(0) 1 = sup| (¢ +2)] = sup | ()] = ||

forany f € X, thus itis a semigroup of isometries but it is not’gsemigroup
onX.
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Consider, howevel, = Span{f,; v € R}, wheref, (z) = ¢"*. ThenY C X,
G(t)Y C Y and(G(t)):>o is a strongly continuous semigroup &n Moreover,

Afv = i’Yf'y

henceiR C o,(A) with corresponding eigenvectors(z) = ¢”*. Thus we

have an example of a strongly continuous semigroup on a (non-separable) Banach
space which is not sub-hypercyclic and therefore the richness of the imaginary
point spectrum is not sufficient for chaos.

4.5 Positive Semigroups

Definition 17 LetX be a Banach lattice. We say that the semigroGgx));>o on
X is positive if for anyr € X, andt > 0,

G(t)z > 0.

We say that an operatdrd, D(A)) is resolvent positive if there is such that
(w,00) C p(A) andR(A\, A) > 0forall A > w.

A strongly continuous semigroup is positive if and only if its generator is resolvent
positive. In fact, the positivity of the resolvent far> w follows from (52) and
closedness of the positive cone; see Proposition 2. Conversely, the latter with
the exponential formula (53) shows that resolvent positive generators generate
positive semigroups.

A number of spectral results for semigroups can be substantially improved if
the semigroup in question is positive. The following theorem holds, [39, Theorem
1.4.1].

Theorem 42 Let (G(t)):>o be a positive semigroup on a Banach lattice, with
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generatorA. Then

oo

R\ A)r = / e MG(t)xdt (79)
0
for all A € C with R\ > s(A). Furthermore,

(i) Either s(A) = —oo or s(A) € o(A) and

s(A) = wi(G);

(if) For a given\ € p(A), we haveR(\, A) > 0 if and only if A > s(A);

(iii) For all R\ > s(A) andz € X, we havd R(\, A)z| < R(R\, A)|z.

From Theorem 42 we see that the spectral bound of the generator of a positive
semigroup controls the growth rate of all classical solutions. However, the strict
inequality s(A) < wo(G) can still occur, as was shown by Arendt; see [39, Ex-
ample 1.4.4]. In this exampl& = L,([1,00)) N L,([1,0)), 1 < p < ¢ < o0,
and the semigroup in question (§(t)f)(s) := f(se*), s > 1,¢t > 0. Its gen-
erator is(Af)(s) = sf'(s) on the maximal domain and it can be proved that
s(A) = —1/p < =1/q = wo(G). Interestingly enoughs(A) = wy(G) holds for
positive semigroups oh?-spaces. This was proved a few years ago by L. Weis,
see the proof in, say, [39, Section 3.5]. However, for the pasd, which is most
relevant for the applications described in this book, it can be proved with much
less effort.

Theorem 43 Let (G(t))>0 be a positive semigroup on atl.-space and letl be
its generator. Ther(A) = wy(G).

The theorem is a corollary of a general result known as the Datko theorem.
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Theorem 44 Let A be the generator of a semigrolp:(t)):>o. If, for somep €
[1,00),

/ IG(0)|Pdt < oo, (80)

forall x € X, thenw,(G) < 0.

Proof of Theorem 43Defining < f, z>:= ||z|| for x € X, we obtain a positive
additive functional which can be extended to a bounded positive linear functional
by Theorems 14 and 15. Let > abs(G) = s(A) (see Theorem 42). Then for

x > 0andr > 0, we have

/6“”!\G(t)det = <f,/e“tG(t)xdt> < <f, R(w, A)z> .
0 0
Therefore

/e‘“’t||G(t)det < 400

0
for all x € X, and hence for alk € X. Theorem 44 then impliegG ()| <
Me@=mt for somep > 0, hencewy(G) < w which yieldsw,(G) < s(A) and
consequentlyg(A) = wo(G). O

4.6 Generation through Perturbation

Verifying conditions of the Hille-Yosida, or even the Lumer—Phillips, theorems
for a concrete problem is quite often a formidable task. On the other hand, in
many cases the operator appearing in the evolution equation at hand is built as a
combination of much simpler operators that are relatively easy to analyse. The
guestion now is to what extent the properties of these simpler operators are inher-
ited by the full equation. More precisely, we are interested in the problem:

77



Problem P. Let (A, D(A)) be a generator of a’;-semigroup on a
Banach spaceX and (B, D(B)) be another operator inX. Under
what conditions doed + B generate a’,-semigroup onX ?

Before attempting to address this problem we point out a difficulty that arises
immediately from the above formulation. Asand B are unbounded operators,

we have to realize that the sum+ B is, at this moment, defined only &4 +

B)x = Az + Bxon D(A + B) = D(A) N D(B), where the latter can reduce in
some cases tf0}. Also, the sum of two closed operators is not necessarily closed:
a trivial example is offered byp = —A andA + B = 0, defined onD(A), is not

a closed operator. Thusgl + B with B = —A does not generate a semigroup.
On the other hand, the closure &f+ B that is the zero operator defined on the
whole space is the generator of a constant uniformly bounded semigroup. This
situation happens quite often and suggests that the formulation of Problem P is
too restrictive and we often restrict ourselves to the following weaker formulation
of it.

Problem P. Let (A, D(A)) be a generator of a’;-semigroup on
a Banach spac&X and (B, D(B)) be another operator inX. Find

conditions that ensure that there is an extensiorof A + B that

generates &;-semigroup onX and characterise this extension.

The characterisation of extensions4# B that generate a semigroup (in general,
there can be many extensions having this property) provides essential information
on the properties of the semigroup and plays a role of the regularity theorems in
the theory of differential equations. The best situation is whea= A + B or

K = A+ B, as there is then a close link betwegnand A and B. However,

there are cases wher€ is an unspecified extension of + B in which case

the semigroup can display features that are rather impossible to deduct from the
properties ofA and B alone.
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4.6.1 A Spectral Criterion

Usually the first step in establishing whethér+ B or some of its extensions
generates a semigroup is to find\if — (A + B) (or its extension) is invertible for
all sufficiently large.

In all cases discussed here we have the genefatab(A)) of a semigroup
and a perturbing operatoB, D(B)) with D(A) C D(B).
We note thatB is A-bounded; that is, for some b > 0 we have
|Bz|| < al|Az| + bllzl|, 2 e D(A) (81)
if and only if BR(\, A) € L(X) for A € p(A).
In what follows we denote by an extension oA + B. We now present an

elegant result relating the invertibility properties)af — K to the properties of 1
as an element of the spectrummt.,, first derived in [28].

Theorem 45 Assume thal = p(A) N p(K) # 0.

(@)1 ¢ o0,(BR(N, A)) forany\ € A;

(b) 1 € p(BR(\ A)) for some/allx € A if and only if D(K) = D(A) and
K =A+ B;

(€)1 € o.(BR(\ A)) for some/allx € A if and only if D(A) ¢ D(K) and
K=A+ B;

(d)1 € o.(BR(\ A)) for some/all\ € Aifand only if K O A+ B.

Corollary 8 Under the assumptions of Theorem 46,= A + B if one of the
following criteria is satisfied: for somg € p(A) either

(i) BR(\, A) is compact (or, itX = L,(2, du), weakly compact), or
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(i) the spectral radius:(BR(\, A)) < 1.

Proof If (ii) holds, then obviouslyl — BR(\, A) is invertible by the Neumann
series theorem:

o

(I = BR(\,A))™' = (BR(\A)", (82)
n=0
giving the thesis by Proposition 45 (b). Additionally, we obtain
R(M\A+B) = R(M\A)(I—BR(MA)™

= R(\A)) (BR(XA)". (83)

n=0
If (i) holds, then eitherBR(\, A) is compact or, inL; setting,(BR(\, A))? is
compact, [24, p. 510], and therefore,lif— BR(\, A) is not invertible, thenl
must be an eigenvalue, which is impossible by Theorem 45(c). O

If we write the resolvent equation
(M—-—(A+B)x=y, yeX, (84)
in the (formally) equivalent form
x — R(\, A)Bx = R(\, A)y, (85)

then we see that we can hope to recove@rovided the Neumann series

R(A) := > (R(\, A)B)"R(\, A)y = > R(A\, A)(BR(X\, A))"y.  (86)
n=0 n=0
is convergent. Clearly, if (82) converges, then we can factorynt A) from the
series above getting again (83). HowevB(\, A) inside acts as a regularising
factor and (86) converges under weaker assumptions than (82) and this fact is
frequently used to construct the resolvent of an extensioA ef B (see, e.g.,
Theorem 50, Theorem 58 or Section 4.7).
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4.6.2 Bounded Perturbation Theorem and Related Results

Theorem 46 Let (A, D(A)) € G(M,w) forsomew € R, M > 1. If B € L(X),
then(K,D(K)) = (A+ B,D(A)) € G(M,w + M| B|).

Moreover, the semigroupG 4. 5(t)):>0 generated byd + B satisfies either
Duhamel equation:

4
Garp(t)r = Ga(t)x + / Ga(t — s)BGarp(s)zds, t>0,xe€ X  (87)
0

and

t
Garp(t)r = Ga(t)x + /GA+B(t — $)BG4(s)xds, t>0,z€ X, (88)
0

where the integrals are defined in the strong operator topology.

Moreover,(G a1 5(t))i>o is given by the Dyson—Phillips series obtained by iterat-
ing (87):

Gats(t) = Z Gh(1), (89)
n=0
whereG(t) = G4(t) and
Gy (t)r = /GA(t — 8)BG,(s)xds. t>0,z € X. (90)

0

The series converges in the operator nornf£ 0K ) and uniformly fort in bounded
intervals.

Proof. First, the problem is reduced to one with= 0 by shifting the genera-
tor, and then with\/ = 1 by renorming the space using the equivalent norm

][] := sup [[Gat)z]. (91)
t>0
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Next, because any bounded operatodounded (with constant = 0), by
Theorem 45(b) we see thatc p(A+ B) ifand only if I — BR(A, A) is invertible

in £(X). By the Hille—Yosida theorem this can be achieve® ¥ > || B|| as then
r(BR(X, A)) < ||BR(A, A)|| < 1in which case the Neumann series (83) gives
the estimate

11 1
m e L _ 92
IR\ A+ Bl < 5 1— IBL - Ra—[B] .

yielding the generation result. The Duhamel formula (87) is obtained by consider-
ing the functionp,(s) = Ga(t —s)Gaip(s)z, x € D(A), ands € [0, t]. Because
Gayip(s)risin D(A) = D(A+ B), ¢, is differentiable with
da
ds
yielding (87) by integration and extension by densityXip which is justified as

all the operators are bounded. The other Duhamel formula follows by considering
the functiomny,.(s) = Garp(t — s)Ga(s)x.

Pu(s) = Ga(t — 5)BGayp(s)r

Finally, the Dyson—Phillips expansion (89) follows by solving (87) by itera-
tions, as for a scalar Volterra equation.

4.6.3 Perturbations of Dissipative Operators

Theorem 47 Let A and B be linear operators inX with D(A) C D(B) and
A+ tBis dissipative foralD <t < 1. If

|1Bz|| < al| Az + b|z]], (93)

forall x € D(A) with0 < a < 1 and for some, € [0, 1] the operator(A +
toB, D(A)) generates a semigroup (of contractions), thén+ tB generates a
semigroup of contractions for evetye [0, 1].
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Proof. The proof consists in showing, by using Neumann expansion, ttat-if
(A + toB) is invertible, then] — (A + tB) is invertible provided|t — | <

1 —a/(2a+10). Since the length of the interval on whi¢k- (A+¢B) is invertible

is independent of the starting poity, by using finitely many successive steps,
we can cover the whole interv@), 1]. Thus(A + ¢tB, D(A)) is a dissipative
operator such that — (A + tB) is surjective for allt € [0, 1]. It is also densely
defined becausP(A) is dense and spA + tB, D(A)) generates a semigroup of
contractions. O

The fact thatu < 1 in the previous theorem is crucial and a lot of work has
been done to changeto =. One result, in general setting, is given below. Some
others, employing positivity, are discussed further on.

Theorem 48 Let A be the generator of a semigroup of contractions @hdwith
D(A) Cc D(B), is such thatd + ¢ B is dissipative for alk € [0, 1]. If

[Bz|| < [|Az|[ + bl (94)

for € D(A) and B* is densely defined, theft+ B is the generator of a con-
tractive semigroup.

Remark 8 If B is closable andX reflexive, thenB* is automatically densely
defined.

We complete this part with a quick glance at possibly the most general pertur-
bation theorem for general operators, called the Miyadera perturbation theorem.

We say that an operatdt is aMiyadera perturbatiorof A if B is A-bounded
and there exist numbersand~ with 0 < a < 00, 0 < v < 1 such that

/ |BG ()] dt < 2] (95)
0

forallz € D(A).
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Theorem 49 If B is a Miyadera perturbation ofd, then(A + B, D(A)) is the
generator of aCy-semigroup(G(t)):o-

4.7 Positive Perturbations of Positive Semigroups

In most perturbation theorems of the previous chapter an essential role was played
by a strict inequality in some condition comparidgand B (or (G a(t)):>o and

B). This provided some link between the generator and both operatansl B,

and ensured that the semigroup was generated lpyB or, at worst, byA + B.

In many cases of practical importance, however, this inequality becomes a weak
inequality or even an equality. We show that in such a case we can still get ex-
istence of a semigroup albeit we usually lose control over its generator that can
turn to be a larger extension df + B thanA + B. In such a case the resulting
semigroup has properties that are not ‘contained! imnd B alone; these are dis-
cussed in the next chapter. Here we provide the generation theorem, obtained in
[17], which is a generalisation of Kato’s result from 1954, [31], as well as some
of its consequences.

Theorem 50 Let X be aK B-space. Let us assume that we have two operators
(A, D(A)) and (B, D(B)) satisfying:

(A1) A generates a positive semigroup of contractiofis (t)):>o,
(A2)  r(BR(M\A)) <1forsomex > 0(= s(A)),

(A3) Bx > 0forz e D(A),,

(A4) <z*, (A+ B)x>< 0foranyz € D(A),, where <z*, z>= ||z,
x* > 0.
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Thenthere is an extensiok’, D(K)) of (A+B, D(A)) generating aCy-semigroup
of contractions, say,Gk(t));>0. The generatofs satisfies, for > 0,

n

RO\ K)z = lim R(\,A)> (BR(\ A))fx

n—00
k=0

= Y R(\A)BR(X A))a. (96)
k

00
=0

Remark 9 If —A is a positive operator, then assumption (A2) can be replaced by
the simpler one:
(A2) |Bz|l < [|Azll,  x € D(A),.

Proof of Theorem 50. We define operator&’,, 0 < r < 1 by K, = A+ rB,
D(K,) = D(A). We see that, as by (A2) the spectral radius Bf?(\, A) does
not exceed < 1, the resolvenfAl — (A + rB))~! exists and is given by

R\ K,) = (M — (A+7B))™" = R(\, A) ) " (BR(\,A)",  (97)
n=0
where the series converges absolutely and each term is positive. Hence, it follows
that
RN Kyl < A7yl (98)

for all y € X. Therefore, by the Lumer—Phillips theorem, for eéick r < 1,
(K., D(A)) generates a contraction semigroup which we de(Gtét));>o. The
net(R(\, K,.)z)o<,<1 isincreasing as 1 1 foreachr € X, and{||R(\, K,)x| }o<r<1
is bounded, so by assumption tiiais a K B-space, there is an element, € X
such that

lim RO\, K,)x = yx,

r—1-

in X. By the Banach-Steinhaus theorem we obtain the existence of a bounded
positive operator onX, denoted byR(\), such thatR(\)z = y,,. We use the
Trotter—Kato theorem to obtain tha&t(\) is defined for allA > 0 and it is the
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resolvent of a densely defined closed operaforhich generates a semigroup of
contraction§ Gk (t)):>o. Moreover, for anyr € X,

lim G, (t)r = Gk (t)x, (99)

r—1-

and the limit is uniform int on bounded intervals and, provided> 0, monotone
asr T 1. By the monotone convergence theorem, Theorem 25, we have

R\ K)x = i R(\, A)(BR(\, A))r, reX (100)

k=0

and we can prove that
RNK)M —(A+B))zx==x
which shows that O A + B. O

The semigrouf G (t)):>o obtained in Theorem 50 is the smallest in the fol-
lowing sense.

Proposition 9 Let D be a core ofA. If (G(t)):>o is another positive semigroup
generated by an extension(©f + B, D), thenG(t) > Gk(t).

The assumption (A2) of Theorem 50 is stronger than the assumptioR tisat
A-bounded, used in Theorem 48. Thus, it is worthwhile to compare Theorem 50
with Theorems 48 and 47.

Proposition 10 Let (G(t)):>o be the semigroup generated By+ B or A + B
under conditions of Theorems 47 or 48, respectively! i§ a resolvent positive
operator andB is positive, ther{G(t));>¢ is positive.

Proof. The first part follows as in the proof of Theorem 47 as the extensions
are done via the Neumann series which preserves positivity. Consider now the
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casea = 1. All the semigroupgG,(t)):>o generated byd + rB are positive
semigroups of contractions. Moreover, for each D(A) we have

lim (A+rB)r = (A+ B)x

r—1-
and it follows that the semigrou=(t));>o, generated byd + B, is the limit
of semigroupg G, (t)):>0 asr — 1, that are positive. Henc@=(t)):>o is also
positive. O

Thus, if X is reflexive andB is closable, then Theorem 48 is evidently stronger
than Theorem 50 as the former requires positivity of neitli&s(¢)):>o nor of B.
Moreover, in Theorem 48, we obtain the full characterisation of the generator as
the closure ofA + B. However, checking the closability of the operat®rin
particular applications is often difficult, whereas the positivity is often obvious.
Also, there is a large class of nonclosable operators which can nevertheless be
positive, for example, finite-rank operators (in particular, functionals) are clos-
able if and only if they are bounded, [32, p.166]. Moreover, Theorem 50 gives
a constructive formula (96) for the resolvent of the generator, which seems to be
unavailable in general case, and this, in turn, allows other representation results
that are discussed below. Also, what is possibly the most important fact, in nonre-
flexive spaces Theorem 50 refers to a substantially different class of phenomena
because, as we show in the next chapter, in many cases covered by this theorem
the generator does not coincide with the closurelof B. Arguments used in
the proof of Theorem 50 are very powerful and can be generalized in many ways.
We present here a theorem in which the sign of the perturbation is reversed; some
other with yet more general perturbations are given below.

Theorem 51 Let (Ay, D(Ap)) be the generator of a positive semigroup of con-
tractions on ak B-spaceX and (N, D(N)) be a positive operator. Assume that
there exists an increasing sequeni¢d’,,, D(N,,))).en Of positive operators sat-

isfying
1. D(Ap) N D(N) is dense inX,
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2. D(N,) D D(N),

3. There is a dense sé& C D(Ay) N D(N) such thatlim N,y = Ny for
yeD,

4. (Ao — N,, D(Ay) N D(N,,)) generates a positive semigroup of contractions
forn=1,2....

Then there is an extensigl, D(K)) of (Ao— N, D) which generates a semigroup
of contractions.

The next result is known as the Desch perturbation theorem.

Theorem 52 Let A be the generator of a positivg,-semigroup inX = L;(2)
and letB € L£(D(A),X) be a positive operator. If for some > s(A) the
operator\/ — A— B is resolvent positive, theg+ B, D(A)) generates a positive
Cp-semigroup onx.

We note that the Desch theorem, Theorem 52, is in fact equivalent to the
Miyadera theorem. This is due to the fact that, for any ope@taith »(C) < 1,
we can introduce an equivalent norm an= L,(2) for which ||C]| < 1 and,
under such norm, the assumptions of the Desch theorem become equivalent to the
ones for the Miyadera theorem. This, in particular, yields

Corollary 9 Let (G(t)):>o be the semigroup generated byt + B, D(A)) (ac-
cording to Theorem 52). Theld-(¢));>( satisfies the Duhamel equation (88) and
is given by the Dyson—Phillips expansion (89).

Theorem 50 in;-setting reads:
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Corollary 10 Let X = L(2) and suppose that the operatofsand B satisfy

1. (A, D(A)) generates a substochastic semigr@Gf, (t)):>o;
2.D(B) D D(A)andBu > 0 foru € D(B)4;
3.forallu e D(A),
/(Au + Bu)dp < 0. (101)

Q
Then the assumptions of Theorem 50 are satisfied.

Proof. First, assumption (101) gives us assumption (A4), that is, dissipativity on
the positive cone. Next, let us take= R(\, A)z = (A — A) "'z forz € X, so
thatu € D(A),. Becausa?(\, A) is a surjection fromX onto D(A), by

(A+ Bju=(A+ B)R(\,A)xr = —x + BR(\, A)x + AR(\, A)z,
we have
—/xd,LH—/BR()\,A)asdu—i—)\/R()\,A)a:d,u < 0. (102)

Q Q Q
Rewriting the above in terms of the norm, we obtain

MR, Azl + [|BROA, A)z|| — [l <0, w e Xy, (103)

from which||BR(\, A)|| < 1; that is, assumption (A2) is satisfied. O

The following extension of the above result could be proved by techniques of
Theorem 50.

Corollary 11 Assume thatl is the generator of a positiv€,-semigroup of con-
tractions inX = L,(Q2) and letB = B, — B_ be such thaB, > 0, D(By) D
D(A) and there exist§’ > 0 with D(A) c D(C) such thatB; + B_ < C and
forall z € D(A),,

/(A;E + Cx)dp < 0. (104)
0
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Then there is an extensidtiz of A + B which generates a semigroup of contrac-
tions.

The Dyson—Phillips expansion seems to be unavailable for semigroups gen-
erated under the assumptions of Theorem 50 in gedéfalspaces. However, it
can be proved in thé, case. The following theorem is a consequence of Theorem
50 but can be also proved from scratch.

Theorem 53 Under the adopted assumptions, the Dyson—Phillips expansion
n=0

where the iterates,, () are defined through

So(t)f = Ga@)f,

t

S\ f = / Sy 1(t— $)BGa(s)fds, n >0, (106)

0

for f € D(A) andt > 0, converges uniformly im on bounded intervals to a
positive semigroup of contractiof&’ (t)):>o.

This semigroup satisfies the integral equation

t

G'(t)f =Galt)f + /G’(t — s)BGA(s)fds (107)
0
forany f € D(A) andt > 0. The generatofs’ of (G'(t)):>o IS given by
(= K = 30 = A B - A7), (108
n=0

and hencgG'(t))i>0=(Gk(t))i>0, Where(Gk(t)):>o is the semigroup obtained
in Corollary 10.
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5 What can go wrong?

5.1 Anoverview

Let us consider the classical birth-and-death process that describes the evolution
of a population whose siZeat any time may increase té+1 or decrease tb—1

owing to a ‘birth’ or ‘death’ of an individual; the probability that a birth or death
occurs in time interval\t beingb, At + o(At) andd, At + o(At), respectively. If

we denote by, (¢) the probability that the population is of sizeat timet, then

the corresponding (so-called forward) Kolmogorov system takes the form:

/
Uy = —b0u0+d1u1,

u, = —(bp+dp)un + dpp1tng1 + bp_1upn_1,
: (109)

We use the convention that boldface letters denote sequences; for example,
(wo, U1, ..., un,...). We also pub_; = dy = 0 and, to avoid technicalities, we
assume that,, d,, > 0 for all other indices.

System (109) is considered in the Banach sp&ce [!; this choice is dictated
by the fact that ifu,, is the probability, them, > 0 and

o0
lafl = u =1
k=0

so that the norm ok should be preserved in the evolution.

First we introduce formal mappings of sequences. Remembering the conven-
tionb_; = dy = 0, we letw = Au = —{(b,, + d,,)un }nen,- By B we denote the
mappingv = Bu, wherev = {d, 1tnt1 + bn-1Un1 }nen,-
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The formal mappings4 and B can define various operators 1 As a ba-
sic choice, we define the operatdrin X as the restriction of4 to the domain
D(A) = {u € X; Au € X}. In particular, ifu € D(A),, thenv = Bu € X,
with

[e.9]

D (oo +w,) = 0. (110)

n=0
This allows us to define a positive operaf®ras the restriction o to D(A). It
follows then that fom € D(A) we have

|Bu|| < [|Au]. (111)

As we said earlier, mathematical equations of the applied sciences are built by
combining various conservation and constitutive laws. They are also formulated
and understood pointwise.

This means that all the operations, such as differentiation, summation, or in-
tegration, are meant in the classical ‘calculus’ sense, and the equation itself is
supposed to be satisfied for all reasonable values of the independent variables.
Thus the birth-and-death system (109) is basically understood as

u = Au + Bu, (112)

where the system, taken row by row, should be satisfied fon &iIr which the
expression above makes sense. The modelling interpretation suggests that one
should have, (t) > 0 for all n € Ny andt > 0, and

iun(t) = iun(()) < 400, t>0.
n=0 n=0

However, if we prove the existence of a semigroup ‘solving’ (112), then what
we really obtain is a solution to a particular reformulation of the original problem
in which on the right-hand side stands the generéafaof this semigroup. This
generator may be quite different fraxh+ B and only a detailed characterization
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of its domain can reveal whether the constructed semigroup gives the full picture
of the dynamics described by Eq. (112). As we show, the genekatstbetween

the minimal operatoK,,,;, = A+ B (defined onD(A)) and the maximal operator
Koax = A+ B defined on

Dypax = {u € X; Au+ Bu € X};

that is, K,,i, € K C K,.x. Where K is situated on this scale determines the
well-posedness of the problem (112). The following situations are possible

1. Kpin = K = Knpax,
2. Kuin & K = Kiin = Kiaso
3. Kuin = K & Kooy,
4, Kpin @ K = Kpin & Ko

5- Kmin g K C,Z Kmax;

and each of them has its own specific interpretation in the model.

In all cases wherd( ¢ K., we don’t have uniqueness; that is, there are
differentiableX -valued solutions to (112) emanating from zero and therefore they
are not described by the constructed dynamical system: ‘there is more to life,
than meets the semigroup’ [12]. To achieve uniqueness here, one has to impose
additional constraints on the solution.

If Kuin & K, then despite the fact that the model is formally conservative,
(110), the solutions are not; the described quantity leaks out from the system and
the mechanism of this leakage is not present in the model. In the Markov processes
such a case is referred to as dishonesty of the transition function, [4].
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Finally, asb,, d,, are the rates of change of states in the population, for any
solutionu(t), the quantity

At i(bn +dy)un(t) (113)
n=0

describes the total number of state changes in the time int&al hus condi-
tion u(t) € D(A) for anyt, equivalent to (113) being finite, reflects the realistic
property of a finite total number of ‘switches’ at any time. Thuskif# K,
then an infinite number of state changes in a finite time interval may occur.

Therefore, strictly speaking, only problems with = K,;, = K.« can be
physically realistic. However, in many applications, the last condition is disre-
garded and the cad€ = K,,;, = K.y IS considered to be ‘optimal’.

5.2 The mathematics behind it
5.2.1 Dishonesty

Equations describing the evolution®ofre typically constructed by balancing, for
any stater, the loss ofu(z, t) that is due to the transfer of a part of the population
to other states’, and the gain due to the transfer of parts of the population from
other states’ to the stater. A general form of such equations is as follows,

ou = Tou + Au + Bu, (114)

where A is the loss operator is the gain operator, arfl, may describe some
transport in the state space (e.g., free streaming or diffusion). The very nature of
the modelling process sketched above requires that the described quantity should
be preserved; that is,should add up (or integrate) to a constant independemnt of

for instance to 1 i, is the probability density, or to the initial number of particles

in the second example mentioned above. If this is the case, then the semigroup
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describing the evolution is conservative for positive initial data and is called a
stochastic semigroup

In many cases, however, the semigroup turns out not to be conservative even
though the modelled physical system should have this property. Markov processes
exhibiting the latter property are well known in probability theory and are referred
to asdishonestor explosive Markov processes. In such cases we have a leakage
of the described quantity out of the system that is not accounted for in the mod-
elling processes. This in turn indicates a possibility of the phase transition during
evolution and shows that the model does not provide an adequate description of
the full process. It seems, however, that this phenomenon is much less understood
from the functional-analytic point of view and though a number of scattered re-
sults, often limited to a particular application, can be found in earlier literature,
[31, 45, 6, 7, 277, 35, 30], a systematic study has been initiated only recently in
a series of papers, [11, 12, 14, 28, 15], and has yielded strong results.

In many cases, however, in the modelling process a mechanism appears that
allows the amount of the described quantity to decrease. It could be an absorbing
or permeable boundary, or some reaction removing a portion of the quantity from
the system. In such a case we say that the semigroup describing the evolution
is strictly substochasticthat is, the substochasticity of it is not caused by a dis-
honesty of the process. The theory of Markov processes deals with such a case by
introducing an additional state that accounts for the loss, and redefines the process
so that the resulting process is Markovian. However, the loss-functional defining
the leakage from the system carries important information about the evolution, for
example, in the fragmentation models it describes the rate of mass loss due to in-
ternal reactions and therefore plays a special role in the description of the process.
It is thus important that we do not amalgamate it with other states so that we can
keep track of mass loss in the evolution.

Moreover, also for strictly substochastic processes, we can have an analogue
of dishonesty; that is, the described quantity can leak out from the system faster
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than predicted by the loss-functional and thus it is important to separate these two
causes of leakage in the model.

Property of honesty/dishonesty of a semigroup is closely related to the char-
acterisation of the generator of the semigroup. To explain why, let us look at a
simplified situation when (114) witlh, = 0 is supposed to model a conservative
system inX = L, (2, du); that is, for sufficiently regula, sayu € D(A),

/(A+B)udu =0

(the total gain is equal to the total loss, according to our terminology from the
beginning of this section). 1A generates a substochastic semigroup Bnid
positive, then by Corollary 10, there is an extensiorof A + B generating a
semigroup of contractions, S& i () ):>o-

Assume now that the semigrouf(¢)):;>o is generated byK, D(K)) =
(A+B, D(A)). Then the solution(t) = Gk (t)uo, emanating fromw, € D(K),,
satisfiesu(t) € D(A); and, therefore, because

d
ult) = Ku(t) = Au(t) + Bu(t),

we obtain that for any > 0

d
(o)) = ~ [(u)+ Buydn =0, (1)
Q
so that||u(t)|| = ||ue|| for anyt > 0 and the solutions are indeed conservative.

If K = A+ B, then foru € D(K) there exists a sequen¢e,,),cn of el-
ements ofD(A) such thatu,, — v and(A + B)u, — Kuin X asn — oo,
thus

/Kudu = lim (A + B)u,dp = 0. (116)

n—oo
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This in turn shows again thatif, € D(K),, thenu(t) = G(tju € D(K), for
anyt > 0 and (115) takes the form

Sl = [~ [ a0,

Q Q

and the solutions are conservative as well. Tkiat A + B is also the necessary
condition is not that clear but can be proved, see Theorem 56.

To make the above terminology precise, the semigrf@(p)).>, is said to be
asubstochastic semigroupfor any ¢t > 0 andx > 0, G(t)z > 0 and||G(t)z|| <
|lz||, and astochastic semigrouib additionally ||G(t) f|| = || f|| for f € X .

We consider linear operators Xi = L;(2,du): T' C Ty + A with D(T") C
D(Ty) N D(A), andB, that satisfy the assumptions of Corollary 10; that is,

1. (T, D(T')) generates a substochastic semigre@p(t)):>o;
2.D(B) D D(T)andBf > 0for f € D(B)5;
3.forall f € D(T),,

J@rsBau=—cn <o (117)

Q

c is an integral functional; that is, for somge> 0

() = | ste)ua) ., (118)

Q

Under these assumptions, Corollary 10, Theorem 50, and other results of
the previous chapter give the existence of a smallest substochastic semigroup
(Gk(t))+>0 generated by an extensidn of the operatofl” + B. This semigroup,
for arbitrary f € D(K) andt > 0, satisfies

© ()] = KGx(t)f (119)
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The semigroupG « (t) ):>o can be obtained as the strong limitihof semigroups

(G, (t))i>0 generated byl + rB, D(T')) asr 1 17; if f € X, then the limit is
monotonic. It is also given as the solution to the Duhamel equation (87) and by
the Dyson—Phillips expansion (89). Moreover, the generAt@f (Gx(t)):>o is
characterised by

(M — K)\f = i(ﬂ —T) BN = T)"f, fe X, A>0. (120)
n=0

It is important to distinguish the class of semigroups correspondingAd,
as such semigroups cannot be stochastic but their substochasticity is built into the
model and not caused by the dishonesty of it.

Definition 18 A positive semigroupG'x (t)):>o generated by an extensidxi of
the operator!” + B is said to be strictly substochastic if (117) holds witk 0.

Next we extend the concept of honesty to strictly substochastic semigroups.

Definition 19 We say that a positive semigro(@ « (¢)):>o (generated by an ex-
tension K of the operatorT” + B) is honest ifc extends taD(K') and for any

0< } € D(K) the solutionu(t) = GK(t)} of (119) satisfies

d d

= [ utydu = Sl = — (u(t)). (121)

It can be proved that (121) is equivalent to it 'integrated’ version:
Proposition 11 (G (t)):>o is honest if and only if for any € X, andt¢ > 0,

Gk @) f = 1fIl = ¢ (/ GK(S)de> : (122)

0
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This result allows for the introduction of the defect function

t

ns(®) = G () F] — 1] + / ¢ (Gre(s)f) ds (123)

0

for f € X, andt > 0. It follows thatn; is a nonpositive and nonincreasing
function fort > 0. For A > 0 we defineLy = R(\,T) = (A — T)~'. Arguing
as in (103) we obtain that condition (117) is equivalent to

—c(Laf) = A LafIl+ IIBLAfI = WA, feXe (124)

The following theorem is fundamental for analysing honesty of substochastic
semigroups.

Theorem 54 For any fixed\ > 0, there isO < 5, € X* with ||3,]| < 1 such that
forany f € X,

MEQX K)fI| = [[fll= <Bx, f> —c (RN, K) ). (125)

In particular, ¢ extends to a nonnegative continuous linear functionalgik),
given again by (118).

Proof. Letus fix f € X, . From (120) and nonnegativity we obtain
N
ML = E)7 ] = ]&EOZOAHLA(BLA)HJC”-
By (124) we get

Y ALABL)"fIl = LI = IBL)M fI| = (ZLA (BLy)" )
n=0

By non-negativity, the monotone convergence theorem gives

N—oo

lim ¢ (Z LA(BL,\)"f> = (RN K)f) < 4o0.
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This shows that extend to a finite functional ofv(K’) which is continuous in
the graph topology. Returning t@7%) we see also that(BLy)V ! f|| converges
to somes, (f) > 0 and, by a similar argumeng,, extends to a continuous linear
functional onX with the norm not exceeding 1. O

By taking the Laplace transform af;, we obtain

o0

<By, [>= —)\/e_Atnf(t)dt
0
for f € X and hence the following result is true

Theorem 55 (Gk (t)):>o is honest if and only i, = 0 for any (somej > 0.
In particular

Corollary 12 If (Gk(t)):>o is dishonest, then there jse X, such thal|Gk(t) f]| <
IfIl = [ ¢ (Gx(s)f) ds for anyt > 0.

A central result on the characterization of honesty is:

Theorem 56 [8] The semigroup(G(t)):>o is honest if and only if one of the
following holds:
@K=T+B.
(b) [ Kudp > —c(u), ue D(K);.
Q

Proof. (a) implies honesty as in (116) - properties of the functierslow passage
to the limit.

Conversely, if(Gk(t)):>0 is honest, them, = 0 for any A > 0, which means,
by the proof of Theorem 54, that

lim (BLy)"f = 0.

n—oo
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Hence the series in (120) convergedo\, 7' + B).

If (Gk(t))i>0 is honest, then first part gives (b) with the equality sign. Con-
versely, foru = R(\, K) f, f € X, we have

[ Kudi= =171+ NBO K S = —ew)- <5 7>
Q
which implies<g,, f><0forall f € X, thusg, = 0. O

Unfortunately, typically we do not knou and thus condition (c) has a lim-
ited practical value. There are two important theorems providing conditions for
honesty and dishonesty in terms of known operators. The first is based on The-
orem 45 which, combined with Theorem 56, shows @@t (¢));>o is honest if
and only if

L ¢ o,((BLy)).

In particular, using the definition gf, we see that
<Br, BRI\, T) f>= lim [[(BR(A, T))""' f|| =<B, f>,

f € X, sothat
(BR(A,T))"x = P (126)

The other set of results is based on the fact that we know at least one extension
of the generatof, namelyK,,... Let  be any extension oK.

Theorem 57 [8]
(@) If [, Kudp > —c(u) for all uw € D(K),. then the semigroup is honest.
(b) If there exists, € D(K), N X such that for some > 0

() Au(z) = [Ku](z) = g(x) 2 0, ae,

(i) ¢(u) is finite and
/ICu dp < —c(u), (127)
Q
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then the semigroufG i (t) ):>o iS not honest.

Proof. The statement (a) is obvious from Theorem 56(casontainsk. In
practice, however, we are interested to use the smallest possible extension since
taking a too large one could spoil the inequality, [7]. Similarly, (b) uses Theorem
56(c) but here the function € D(K), satisfying (127) may fail to belong to
D(K); the other two conditions allow one to prove that there is an element of
D(K) satisfying (127), thus proving dishonesty(6fx (2)):>o. OJ

Extension Techniques For further reference we briefly sketch a particularly ef-
fective extension technique. We emb¥d= L, (2, du) in the set ofu-measurable
functions that are defined dn and take values in the extended set of real num-
bers, denoted b¥; by E; we denote the subspace Bfconsisting of functions
that are finite almost everywherE.is a lattice with respect to the usual relation:
‘< almost everywhere’X C E; C E with X andE, being sublattices dE.

Let F C E be defined by the conditionf € F if and only if for any nonneg-
ative and nondecreasing sequefi¢g),cy satisfyingsup,,cy f» = |f| we have
sup,en(I = T)71f, € X.

We define mapping : F,. — X, by

Lf = SupR(17T)fn7 f € F+7

neN

where0 < f,, < f,41 foranyn € N, andsup,,. f, = fand extend it to a positive
linear operators on the whole(B) andF, respectively, Theorem 14.

In most applicationg/ — 7))~ is an integral operator with positive kernel so
that, by monotone convergence theoré&mpincides is the set df, (Q2) functions
for which the integral exists. In the same way we definen D(B). It turns out
thatL is one-to-one therefore we can define the operataith D(T) = LF C X
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by
Tu=u— L', (128)

so thatT is an extension of'. The central theorem of this paragraph reads:

Theorem 58 If (7, D(T")) and(B, D(B)) are operators inX such tha{7", D(T'))
generates a substochastic semigrdtfx-(t)):.>o on X, D(B) D> D(T), Bu > 0
foru € D(B),, and

/(Tu + Bu)dp <0, (129)

Q
forall u € D(T),, then the extensioR” of A+ B, that generates a substochastic
semigroup onX by Corollary 10, is given by

Ku = Tu + Bu, (130)
with
D(K) = {ueD(T)NnD(B): Tu+Bue€ X,

and lim |[(LB)"u|| = 0}.

n—-+00

Using the current notation, we can give a more focused version of Theorem
57(a).

Theorem 59 If for any g € F, such that-g + BLg € X, andc(Lg) exists,

[Lodn+ [ (~g+8BLg) du=—c(Ly). (131)
Q Q

thenK =T + B.
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Remark 10 It is worthwhile to reflect on the nature of dishonesty. By definition,
(Gk(t))>0 is dishonest if it is not honest and therefore f6fx (¢)):>o to be dis-
honest, itis enough that (122) does not hold for just pre X', at one moment of
timet > 0. Hence it makes sense to consider ‘pointwise in space’ honesty and say
that(Gk(t)):>o is honest along the trajectoryG  (t) f }+>0 if (122) holds for this
particular f and for all¢ > 0. Accordingly, such a trajectory is called aonest
trajectory. Thus(Gk(t)):>o is honest if and only if each trajectofy () f }+>0
is honest. Moreover, honesty can also be considered to be a ‘pointwise in time’
phenomenon. Indeed,if(t,) € D(T + B) for somet, > 0 then, by (116),

gll| = —etuteo)
and therefore we can say that the trajectd€y (¢) f }+>0 iS honest over a time
interval I if and only if G (t)f € D(T + B) fort € I.

In other words Gk (t)):>o is dishonest along the whole trajectdr§ « (¢) f }+>0
if and only if this trajectory, starting fronf € D(T + B), leavesD(T + B)
immediately and stays i (K) \ D(T + B) forall t > 0.

In general, our theory cannot determine, in general, whether a given system
(Gk(t))>0 can be dishonest along some trajectories and honest along the others.
Using specific properties of birth-and-death and fragmentation models, however,
we can show that dishonesty in these models is spatially universal. That is, if it
occurs along one trajectory, it must occur along any other; see Theorem 65.

Unfortunately, much less can be said about how dishonest trajectories behave
in time. One of the reasons for this is that our theory is based on the Laplace
transform approach which gives, in some sense, time averages of solutions which
provide little information about the properties which are local in time.
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5.2.2 Multiple solutions

Let us return to the general Cauchy problem (42), (43).Alfs the generator
of a semigroup, then the problem is always uniquely solvable. Hence, multiple
solution only can occur if the original operator is not a generator.

Assume that, for a givem,, (42), (43) has two solutions. Then their difference
is again a solution of (42) but corresponding to the null initial condition — it is
called anul-solution

Theorem 60 [29, Theorem 23.7.1] If4 is a closed operator whose point spec-
trum is not dense in any right half-plane, then for eagh € X the Cauchy
problem of Definition 12 has at most one exponentially bounded solution.

Proof. The proof essentially follows by taking the Laplace transform of both sides
of (42) and some careful manipulation to ensure convergence. O

A useful reformulation of the previous theorem reads as follows:

Theorem 61 [29, Theorem 23.7.2] Lefl be a closed operator. The Cauchy prob-
lem (42), (43) has an exponentially bounded nul-solution of typeif and only
if the eigenvalue problem

Ay(A) = Ay(A) (132)
has a solutiony(\) # 0 that is a bounded and holomorphic function)oiin each
half-planelRA > w +¢,¢ > 0.

Now we investigate a relation between Cauchy problems (42), (43) and (47), (48).
Let (A, D(A)) be the generator of &,-semigroup(G(t)):>o on a Banach space

X. To simplify notation we assume th@#(t)).>o is a semigroup of contractions,
hence{\; ReX > 0} C p(A). Letus further assume that there exists an extension
A of A defined on the domaiP(.A). We have the following basic result.
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Lemma 4 Under the above assumptions, for anwith ReX > 0,

D(A) = D(A) ® Ker(A — A). (133)
The next corollary links Theorem 61 with the above lemma.

Corollary 13 If D(A)\D(A) # 0,thenc,(A) 2 {\ € C; ReX > 0}. Moreover,
there exists a holomorphic (in the normXj function{\ € C; ReX >0} 5 A —
e, such that for any\ with Re A > 0, e, € Ker(Al — A), which is also bounded
in any closed half-plangl\ € C; ReA > v > 0}.

An important observation is that analogous considerations can be carried also for
mild (or integral) solutions of (42), (43), defined as for the semigroup: We say
thatw is a mild solution of (42), (43) it. € C(]0, 00), X), fotu(s)ds € D(A) for

anyt > 0, and

u(t) =u +A / u(s)ds, t>0. (134)
0

For mild solution we have the following counterpart of Theorem 61.

Corollary 14 Let A be a closed operator. If (42), (43) has a mild nul-solution of
type< w, then the characteristic equation
Ay(A) = Ay(A) (135)

has a solutiony(A) # 0, which is a bounded and holomorphic function)oin
each half-planeRe) > w + ¢, e > 0. Again,y()) in (135) can be taken as

o0

y(\) = /e”u(t)dt. (136)

0

This observation allows to check uniqueness only for continuous solutions of the
integral version of the problem, which is technically simpler.
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5.3 Applications to birth-and-death type problems

Let us recall that here we deal with the system

uy = —agug + dyuy,

/
U, = —QpUp + dpy1Uptp1 + bpqUp_1,

(137)

We assume that the rates of change are given and are denotgdaloyl b,, for
changes: — n — 1 andn — n + 1, respectively. In general, we can also include

a mechanism that changes a number of objects at thesthye for example,
removing them from the environment or, otherwise, introducing them. The rate
of this mechanism is denoted ley= (c¢,).en @nd in such a case we hawg =

b, + d, — a,. The classical application of this system comes from population
theory, where it is a particular case of a Kolmogorov system; in thiscagethe
probability that the described population consists efdividuals and its state can
change by either the death or birth of an individual thus moving the population
to the statex — 1 orn + 1, respectively, hence the name birth-and-death system.
The classical birth-and-death system is formally conservative; this is equivalent
to a, = d, + b,. However, recently a number of other important applications
have emerged. For example, [33], we can consider an ensemble of cancer cells
structured by the number of copies of a drug-resistant gene they contain. Here,
the number of cells wit copies of the gene can change due to mutations, but
the cells also undergo division without changing the number of genes in their
offspring which is modelled by a nonzero vectar Finally, system (137) can

be thought of as a simplified kinetic system consisting of particles labelled by
internal energy: and interacting inelastically with the surrounding matter where

in each interaction they can either gain or lose a unit (Quantum) of energy. Some
particles can decay without a trace or be removed from the system leading again
to a nonzera.
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The most common setting for birth-and-death problems is the dpaétere
we extend it to othet, spaces to demonstrate the applicability of Theorem 50. The
existence results of this section fpr> 1 can also be proved using Proposition
10; see [19].

5.3.1 Existence Results

Let us recall that the boldface letters denote sequences, for exampléyg, u,, . . .).
We assume that the sequended, anda are nonnegative with_; = dj.

By K we denote the matrix of coefficients of the right-hand side of (137) and,
without causing any misunderstanding, the formal operator in the gpaicall
sequences, acting as

(Ku)n = bnflunfl — QpUp + dn+1un+1-
In the same way, we definé and as(.Au),, = —a,u, and(Bu), = b,_1u,_1+

dpi1uns1, respectively.

By IC, we denote the maximal realization &fin [, p € [1, o0); that is,
Kyu = Ku

on
D(K,) ={uel, Kuecl,}. (138)

It is easy to check that he maximal operatdyis closed for any € [1, c0).
Next, define the operatot, by restrictingA to

D(A) ={uel; Auel}={uecl,; > a|u,| <+oo}.
n=0
Again, itis standard thdtA,, D(A,)) generates a semigroup of contractiong,in
Using Theorem 50 we can prove the following result.
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Theorem 62 Assume that sequendesindd are nondecreasing and theredse
0, 1] such that for alln,

0<b, <aa,, 0<dp1 <(1—a)a,. (139)

Then there is an extensidi, of the operator(A, + B,, D(A4,)), whereB, =
B|pa,),» Which generates a positive semigroup of contraction’s,ip € (1, c0).

Furthermore, we can prove thais closed and thus, is closable. Then Theorem
48 implies
K,=A,+ B,

providedp € (1, 0c0). The situation irl; is completely different.

Corollary 15 Letp = 1. Assume that sequendesindd are nonnegative and
@ > (by + dy). (140)

Then there is an extensiaid; of the operator(A; + By, D(A;)), whereB, =
B|p(a,), Which generates a positive semigroup of contractioris.in

Proof. Using the definition ofD(A;) we see, from (140), tha < b,, < a, and
0 <d, <a,forn e N. Hence,A; is well defined and condition (117) takes the
form

[e.o]

Z((Al + Bl)u)n = - Z Qp Uy + Z bn—lun—l + Z dn—i—lun—i-l
n=0 n=0 n=0

n=0
n=0 n=0 n=0

where we used the conventién, = d, = 0. O

We have also the following result.
Theorem 63 For anyp € [1,00) we havek, C K,,.

Forp = 1, itis immediate consequence of Theorem 58.
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5.3.2 Birth-and-death problem — honesty results

We now find whether the constructed semigroup is honest (conservative) or dis-
honest by means of the extension techniques of Subsection 5.2.1. In the case of
matrix operators it is particularly easy to give explicit descriptions of the extended
operators and related spaces. In particllar= m, the set of bounded sequences

and, for instance,
= ()
u=|-——F7—"
L+by+dn) en

onF ={uem; Lueli}, Au= ((by + dn)u,),cy OND(A) = LF, and similarly
for the other operators and spaces introduced in Subsection 5.2.1.

Recall that byC we denoted the matrix of coefficients and, at the same time,
the formal operator acting om given by multiplication by/C. It is easy to see
that the maximal operatdt, (see (138)) is precisely

Ki=K=A+B. (141)

Note too that foru € D(K), the integralf,, Kudu, which plays an essential role
in a number of theorems (e.g., Theorems 56 and 57), is given here by

o0

Z(_(bn + dn)un + bn—lun—l + dn+1un+1)

n=0
n

= lim (—(bk + dk)uk + bk,luk,l + dk+1uk+1)

n—-4o00o
k=0

= lm (—=byu, + dy1Ung), (142)

n—-+o0o

where the limit exists aa € D(K) yields the convergence of the series.

In the theorems concerning honesty and maximality we assume, to avoid tech-
nicalities, that,, > 0 forn > 0 andd,, > 0 for n > 1.
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Theorem 64 K = A+ B ifand only if

00 7

i bi (Z 1 %) e (143)

b ..
i=0 j=1 17

(where we puf;_, = 1).

Proof.To prove honesty, we use Theorem 59. Thus, by (142) it suffices to prove
that for anyu € D(K) ;.

lim (_bnun + dn+1un+l) 2 07

n—-4oo

where we know that the sequence above converges. If we assume the contrary,
that for some) < u € D(K), then limit in (142) is negative so that there exists
b > 0 such that

—bptp + dpgitlner < =0 (144)

for all n > ng with large enough. Using (144) as a recurrence we get

b (SOt
wrl (z I bw)

and, if the assumption (143) is satisfied, we obfajJi_,u,, = +o0o which contra-
dicts the assumption of the summability(@f, ),,cx.

The proof of necessity is an application of Theorem 57. If the series in (143)
is convergent, then, by some algebra,

bn—l bz oo 1 dz
w L (10

dH_l I=n i=1 °

is summable and satisfies

—b= _bnun + dn+1un+1a n=>0
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so that assumption (iii) of Theorem 57 is satisfied. By construction Bu € [y,
so thatu € D(K). We must show thag = u — (Au + Bu) > 0. By direct
calculations, we obtaigy = ug + boug — diu; = ug + b and forn > 0,

Gn = Up + bnun + dnun - bn—lun—l - dn—i—lun-‘rl = Unp,

so thatd < g € ;. Hence assumption (i) of Theorem 57 is satisfied. O

5.3.3 Universality of Dishonesty

Theorem 65 If (Gk(t)):>o is dishonest, that is, if

> bl (Z 11 @> < 400, (145)

b ..
n=0 " \i=0 j=1 "71J

then for eachu, € X, thereist, > 0 such thal|G k (t)uo|| < ||uol| forall ¢ > t,.

Proof. By Theorem 55(Gx(t)):>o is dishonest if and only if the functional,,
defined in Theorem 54, is not identically zero. The defect function along the
trajectory originating ati,, which in our case is given by, (t) = |Gk (t)uol|| —

llugl|, is related ta3, by

o0

1
/e’\tnuo(t)dt =3 <Oy, ug> .
0

Clearly, A is inessential. Putting, = 5 = (6,)nen With 5, > 0, we see that for

universality of dishonesty we must hasg > 0 for anyn > 0. On the other hand,

by (126),4, is an eigenvector ofBR(A, A))*. Any eigenvectof¢,, ),y Satisfies
bo

1+ by

¢ = ¢,
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d, bn B
T bt d, " 150, 0,0 T O

9

and, because, /(1 + by) < 1, we havep; > ¢y. Rearranging the terms imth
equation,

1 d,,
¢n+1 = (1 + E) ¢n + b_(¢n - anfl)-

n

Henceo,, .1 > ¢, whenever, > ¢,_; we end the proof by induction. O

5.3.4 Maximality of the Generator

Let us recall that the relation between the generat@nd its extensions andX
is given in (141). In particulai is the maximal operator.

Proposition 12 If (Gk(t)):>0 IS @ substochastic semigroup generatedibyand
for some) < h € D(K),

/ Khdp > 0, (146)
Q

then K # K; that is, the generator is not maximal.
Conversely, assume thatitZ£ u € [ solves the formal equation
Ku=Au, X>0, (147)

then eithera > 0 oru < 0, and

/ Khdyu = 0, (148)
Q

for anyh € D(K). ThenK = K that is, the generator is the maximal operator.
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Proof. It follows that if h € D(K), then [, Khdu = 0. Because C K,
(146) shows thah ¢ D(K).

If K # K then, by Corollary 13, we haw¥ (\] — K), # (). Because (147) is
linear, then the assumption ascertains the existenge/oh € N(A\I — K), and
for such arh

/Khdu = / hdp # 0, (149)
Q Q
contradicting (148). O

To be able to use this result, we have the following lemma.

Lemmab5 Let A > 0 be fixed. Any solution to (147) is either nonnegative or
nonpositive.

On the basis of the above lemma, we have:

Theorem 66 K # K if and only if

ool 1
20

n=1 " j=1

[asry

n

n— (2

b" (Z > < 400, (150)

i=0 j=1 "

=8

£

&
=

<
Il

where, as beford [}_, = 1.

Proof. By Lemma 5 and Proposition 12y # K if and only if for each0 <
(un)nEN € lli such that(_(bn + dn>un + bnflunfl + dn+1un+1n)n€N € ll; we
have

o

I= Z (_(bn + dn)un + bn—lun—l + dn+1un+1) > 0.
n=0

and, similarly to the proof of Theorem 64 and (144) we need to investigate the
behaviour of the sequenc¢e, ),.cy defined as

T = —bpty + dpi1tni1, n >0, (151)
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or,solving foru,,, forn > 1,

n—1 n—1—
= (m 11 Z) tohn 77 (152)

i=0 j=1 "I

If K # K, thenthereisanonnegative,),cn € [; forwhich/ = lim,, . r, >
0 and, by some algebra, it is enough to consider a nonnegative sequehgce; €
D(K) with the associated sequeneg),.cy satisfyinginf,cy 7, = r > 0. Then it
can be proved that the series in (150) is convergent.

To prove the converse, defing by (151) with arbitrary(r,,),cn converging
tol > 0 (e.g., we may take,, = r for all n for a constant positive). By (150)
(tn)nen € Uy, SO that(u,).en € D(K) and becausé > 0, the thesis follows by
(146). O

5.3.5 Examples

We provide a few examples showing that all possible cases of relations between
the generator and maximal and minimal operators can be realized.

Proposition 13 If both sequence®;!),.cn, (d, )pen & L1, thenK = A+ B =
K. In particular, this is true for the standard birth-and-death problem of popula-
tion theory where the coefficients are affine functions.of

Proof. Expanding (150) we get, for a fixed

1 bt boto b\ L1
Sl O T L St Ll St T B el
dn( oot +dn_l...dl)—dn

Similarly, expanding (143), we get

1 dn-i—l
bn ( * bn+1 +)
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which gives divergence of both series. 0J

The proofs of the following results are obtained in a similar way.

Proposition 14 If (d;!),ey € [, and

b
lim =t =q <1, (153)

n—oo n

thenK = A+ B # K.

Proposition 15 If the sequencéd,, ),y is of polynomial growthid,, = O(n”) for
somesd asn — oo, (b, )nen € [, and

n

lim Z—n =q>1, (154)

n—oo n

thenA+ B ¢ K =K.

Proposition 16 There are sequencés$,,),cy and (d,),en for which A+ B &
K ¢ K.

Proof. Takeb,, = 2 - 3™ andd,, = 3". O

5.4 Chaos in population theory

We consider a population of cancer cells characterized by different levels of drug
resistance. The cells belonging to 0—th subpopulation are sensitive to antineoplas-
tic drugs. The cells ofi—th subpopulationy > 0, are resistant with the level of
resistance increasing withh Each subpopulation contains cells characterized by

a number of copies of a drug resistance gene. The more copies of the gene exist,
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the more resistant the cell, with the understanding that it can survive under higher
concentration of the drug. Since the number of gene copies can be very large,
we use a model with an infinite number of cell subpopulations. We consider a
gene amplification — deamplification process characterized by two components:
the conservative one and the proliferative one.

The conservative component of the process describes the mutations of cells
modelled as in standard birth-and-death process. The proliferative component of
the process is related to the assumption that the moment of death represents the
moment of cell division and that the average life—span is given by the coefficient
A for the n—subpopulations{ > 0). This model leads to the infinite system of
ordinary differential equations

dfy

T —ao fo + di f1, (155)
df,
% - _anfn + bn—lfn—l + dn+1fn+17 n Z 17

where we denoted, = —\¢ + by anda,, = —\, + 0, +d, forn € N. We

denote byf = { f,.(¢) }.>o the distribution function and by the infinite matrix of
the coefficients on the right-hand side of (155). The proper Banach space for the
process defined by Eq. (155)/is where the norm

£l =" fa. (156)
n=0

of any element in the positive cond}: I} = {f e I' ; f, >0 n =
0,1,2...} represents the total number of cells. For the sake of completeness we
shall consider also the Banach spae$ < p < oo, andc, (the space sequences
converging td)), with natural norms.

In[13], Eqn. (155) is considered under the assumption that the coeffiaignts
b, (for n € Ny), d,, (for n € N) are nonnegative and

(Al) for somea > 0, a, = a + «,, n € Ny, with lim «,, = 0,

n—oo
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(A2) for somed > 0 lim d, = d

n—oo

(A3) lim sup b, = 0.

Let £,, p € [1,00[U{0} denote the operator realization bfin [? andc, re-
spectively. The operators, are bounded, hence they generate dynamical systems
(T,(t))t=0 in " andcy, respectively.

Theorem 67 Let the assumptions (Al), (A2) and (A3) be satisfied. There-i9
such that if|a,| < d¢"™!, |bpd,—1] < d?¢*" anda < d, then the semigroup
generated by, is chaotic in anyi?, 1 < p < oo, and incy.

Consider the system transposed to (155)

d

£ = —agfo+ bofi, (157)
df,

E - _a/nfn + dn.fn—l + bnfn—i-la n €N

Using the fact that; = I' and(/?)* = 1", 1/p+1/r = 1, by Theorem 38, if (157)

was chaotic in any subspace, then the codimension of the span of all eigenvectors
of the operator in (155) in respective space would be finite. Since this is not true,
we have

Corollary 16 Suppose that the sequences), (b,) and(d,,) are as in Theorem
67. Then the semigroup generated by (157) is chaotic in no subspatel ok
p < 00, or of ¢.

Theorem 67 ensures the topological chaos for large deamplification (“death”) rates
and small amplification (“birth”) rates, i.e. for the process which is subcritical. On

the contrary, chaos will not appear in processes with small deamplification rates
and possibly large amplification rates. The assumptions of Theorem 67 are often
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not realistic — in most standard applications the coefficients depend in an affine
way onn. This creates numerous problems starting from the generation of the
semigroup through the construction of eigenvectors to their density in

We adopt the following assumption.
Assumption AC There exists Ny > 1 such that

a, = an + «,
dps1 =dn+96, (158)
bp1=bn+ 0, n> Ny,

witha = —(b+d),b,d>0,a,3,0 € R.
In this case the proliferation rate does not depend @or largen, and equals

y=a+0+d6+b—d.
Recall thatl is the infinite matrix of coefficients. We define
D(Lmaz) ={f €l’; Lf €17}
andL,ax = L{D(£00s)-

Theorem 68 [18] Suppose that AssumptiokC is satisfied and € [1;+00).
Then.,,.. is a unique realization of, that generates &',-semigroup in®.

The importance of the identification df,,.,,. as the generator stems from the fact
that/?-solutions of the infinite system

Ao —ao fo + di f1, (159)

)\fn _anfn + bn—lfn—l + dn—l—lfn—i—h n Z ]-7

are the eigenvectors of the generator.
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Proposition 17 Let Assumption AC be satisfietl;> b, N} :== max{n > 0:d, =
0}. Forany\ € C there exists a unique sequent@\) = (f.(\)).>o Satisfying
(159) and the initial conditions f,,(\) = 0 for n < Ng, fa:(A) = 1. Moreover,

(i) f.(X)is apolynomial in\ of degreen — N/ for n > N{;

(i) forany ), € C ande > 0, there existd< > 0 such that ifA — )| < € and
n > Nj+ 1, then

_ a+B+5—RA

|fn(N)] < Kn™ = (160)
Denote byll, (b, d, «, 3, 0) the open left half-plane defined by

,(b,d,a,3,0) ={A€C: RA<}, (161)

where i b
’yp:a+ﬂ+5—7. (162)

Corollary 17 Consider the operator,,., acting in the spacé#’, 1 < p < oc.

If AssumptiorAC holds withd > b, thenll, (b, d, o, 3,9) C 0,(Linas). More-
over, for any\ € I1,(b,d, o, 3, ) the sequencg(\), given by Proposition 17,
is an eigenvector of,,., for the eigenvalue\, and the vector-valued function
IL,(b,d, v, 3,9) 2 A — f(\) € [? is analytic.

Theorem 69 Suppose that < p < oo and that AssumptioAC holds withd > b
and~, > 0. Then theC;-semigroup generated b, in [? is sub-chaotic.

Theorem 70 Suppose that Assumption AC is satisfied; [1;+00), and either
of two cases hold:

()b > d,
(ii) dyn, = 0,

for somemy > 1. Then theC,-semigroup generated ... is not topologically
chaotic.
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5.4.1 Meaning of chaos

In most biological applications only non-negative solutions make sense (the solu-
tion should stay in the non—negative coné,9fand it is only fair to note that the
chaotic properties discussed here cannot occur for such solutions. In fact, for sys-
tems with strictly positive proliferation, thig norm of a solution may only grow

and hence the solution cannot wander.

On the other hand, as we are dealing with linear systems we may wish to
consider the differences between two physical (i.e. hon—negative) solutions and
such a difference certainly need not be non—negative. In fact, we have

Proposition 18 Let X be a Banach lattice. I{G(t)).> is chaotic (subchaotic)
in X, then for anye > 0 there existry, z, € X, such that/|z; — x5|| < ¢ and
t — G(t)x; — G(t)x, is dense in the space of chaoticity(6f(¢)):>o.

Proof. Let X, be a space of chaoticity ¢€+(¢));>o. There is a dense trajectory
in X, so, in particular, for any > 0 there isz € X, such that]|z|| < ¢ and
{G(t)z}+>0 is dense inX,, (since any tail of a dense trajectory is dense). Since
the positive cone in a Banach lattice is generating, thereare € X, such that

z = x1 — xo. From linearity,G(t)z = G(t)x1, — G(t)xs. O

6 Asynchronous growth

The analysis in Subsection 4.4 gives some information about how fast a semi-
group can grow but does not yield any clue as to whether there are any long term
patterns of the behaviour of the semigroup. Some such patterns were discussed in
Subsection 1.2. In many cases, as in the finite dimensional case, such patterns are
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associated with the eigenvalues with largest real value. This section is devoted to
existence of such eigenvalues.

The first step in this direction is to ensure existence decomposition of the spec-
trum of the semigroup into isolated point part and the rest which, hopefully, will
have real parts smaller that the point part. This of course occurs if the semigroup
is compact (or even eventually compact) and, more generally, when its essential
spectrum radius is strictly smaller that the spectral radius.

6.1 Essential growth bound

The concept of essential spectrum provides more insight into the long time be-
haviour of semigroups. Sineg,(G(t)) is defined through the norm in the quo-
tient space, we can define the Fredholm growth rate of the semigroup using the
Fredholm norm| - || and prove in the same way as for the growth rate that

1
wo(4) = lim = log||G(1)]ls (163)
and
o) = ra(G(1)

However, using (29) we can replace by r.., and callwg the essential growth

rate and denote it by,.. This shows that at the level of spectral radii and growth
bounds the distinction between Fredholm and essential spectra (and thus between
approaches of [38, 26] and [21, 5]) disappears.

Clearly,w.(G) < wo(G). If w.(G) < wo(G), then there is an eigenvalue of

(G(t))e>0 satisfying
’)\| _ ewo(G)t

hence, by Theorem 23(2), therelis € ¢,,(A) such thatR\; = wy. Sinces(A) <
wo(G) we obtain the important result

wo(G) = max{w.(G), s(A)} (164)
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We shall look more closely into implications of (G) < wo(G). In this case
s(A) = wo(G).

Theorem 71 Supposev.(G) < wy(G). Theno,,, 4y # 0 and is finite. More-
over, X can be decomposed in a unique way into a s\NirH S of two closed
G(t)-invariant subspaces with one of them (ggy of finite dimension. Further-
more,o(A|n) = Oper,s(a) @aNAwo (Gls) < wo(G)

Proof. First we note that, by (164) and the definition @f4), for anyy €
(We(G),wo(G)] there ish € o(A) \ 0.(A) (and alsoX € o(A) \ ge(A) with

7 < RA < wo(G). We will show that for anyy > w.(G) there are only
finitely many A\ satisfyinglRA > ~. To the contrary, assume that there is an
infinite sequencé\,, ),y satisfyingw.(G) < v < R\, < wo(G). Since each

A € 0,(A) thus, by the Spectral Mapping Theorem for the point spectrum,
i = € € 0,(G(t)) for anyt > 0. Assume that for somg > 0 the sequence
(1n)nen has an accumulation point. By the definition of the essential spectrum,
this impliesr.(G(ty)) > e but thenw.(G) > ~, which is a contradiction. So,
none of the sequencés™" ),y has an accumulation point hence, being bounded,
must be finite. Fix agaih > 0. There may be an infinite sequence\qf(denoted
again by(\,).en) satisfyingu = ¢~ for eachn, see (70). The eigenspacesbf
corresponding to distinct, are linearly independent. But then their direct sum is
infinite dimensional and corresponds to the eigenspac&of corresponding to

1 contradicting again the definition of the essential spectrum. The first two state-
ments of the lemma follow now by specifying= s(A). The other two can be
obtained by definingV as the sum of(er. (A — A) over\ € oy, 54y andsS as

the intersection of m ((\I — A)*) overk € Nand)\ Oper,s(4) (OF €quivalently,
using the fact that,,., ,(4) is isolated ino(A) and compact, by taking the spectral
projection corresponding ®,.,. ;1) and its complement. O

Remark 11 Using the terminology of Subsection 1.2, we see that EAEG holds if
we(G) < wo(G). Then, MAEG holds if, moreovefs,., ;1) consists of a single
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eigenvalue. Finally, AEG holds if, in addition, this eigenvalue has multiplicity
one. In fact, these conditions are necessary and sufficient, [5].

It seems that to make a progress towards MAEG and AEG, we have to assume
that the semigroup at hand is positive.

6.2 Peripheral spectrum of positive semigroups
The main result of this subsection is

Theorem 72 If (G(t)):>0 IS a positive semigroup on a Banach lattidegener-
ated byA such thats(A) > —oo is a pole of the resolvert(A, A). Theno,., s(a)
is additively cyclic.

The proof of this result is quite technical and draws on numerous results from the
theory of positive operators on Banach lattices and we shall refrain from giving

it in detail. It is, however, worthwhile to discuss a few salient point of the proof
which use the relations between Banach lattices and the space of continuous func-
tion C'(K), given by the Kakutani-Krein theorem (Theorem 13).

We recall the signum operatét, (see Example 17)) and define
ub = S¥|ul, kelZ

L

whereuy™! := 4.

The crucial result is the following lemma.

Lemma 6 If 7" and R are two bounded operators satisfyin@z| < 7'|z|, z € X,
and Ru = v andT'|u| = |u| for u € X such thatu| is a quasi-interior point (see
Lemma 2), thefl = S 'RS,,.
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Proof. The proof uses the fact that, ass quasi-interior,X can be identified with
a space of continuous functions. Details are given in [21, Lemmas 8.8-9].

To illustrate this result we shall discuss two other results which are related to
Theorem 72 but which are relatively simpler.

Proposition 19 If L is a positive operator on a Banach lattiéé (and thus bounded)
and suppose thatu = au and L|u| = |u| for someu € X anda € C with
la| = 1. Then, for every: € Z we haveLu* = o*u*.

Proof. SinceL is bounded, it leaves(, invariant. Definel’ = L|x-andR =
a 'L. ThenTu = Ru, T|u| = L|u| = |u|, and|Tz| = |Lz| = |Rz| for z € X,,.
Hence,I = S;'RS, = a~ 1S, 'TS,. Iteration yieldsI' = %S *T'S*. Hence

Tu™ =TS *lu| = S *T|u| = a S *lu| = a*u™", k € Z,

which gives the thesis. O

Corollary 18 Let (G(t)):>o be a positive semigroup on a Banach lattice gener-
ated byA, and suppose that for some= X anda, 3 € R we have

Au= (a+if)u, Alu| = alul (165)

Then
Au" = (a+influ”. neZ (166)

Furthermore, if|u| is a quasi-interior point ofX, thenS,D(A) = D(A) and
A+iBI = S;'AS,.

Proof. We may assume = 0. Eq. (165) implies7(t)|u| = |u| andG(t)u =
ey, t > 0, by Theorem 23 (2). Thus, by Proposition 19, we héi@)u" =
ey which, again by Theorem 23, is equivalent4a” = i3nu™.
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If |u| is a quasi-interior point o, then in the proof of Proposition 19 we
haveX = X, sothatl' = L = G(t) andR = ¢~"#'G(t). Thus yields""'G(t) =
S-1G(t)S, for all t > 0 which impliesS,D(A) = D(A) (by S.eP'G(t) =
G(t)S,) andA + i3I = St AS,. O

The above result allows to give a simple proof a theorem on cyclicity of point
spectrum in Banach lattices with strictly monotonic norin< f < ¢ implies
Il f1l < llgll- In particular, the spacds, have this property.

Theorem 73 SupposeX is a Banach lattice with strictly monotone norm. If
(G(t))e=0 is a positive contractive semigroup wikhA) = 0, theno,,.,. s4)No,(A)
is imaginary additively cyclic.

Proof. Suppose thatlu = iBu for some3 € R,u € X. ThenG(t)u = e’y
and|u| < G(t)|ul|. Hencellu|| < [|G(t)|u||| < [Jul| since(G(t)):>o iS contractive.
Hence||G(t)|u||| = ||u|| and, by strict monotonicity of the norngs(¢)|u| = |0],
which impliesA|u| = 0. Using Corollary 18 we obtain the thesis. O

Corollary 19 If assumptions of Theorem 73 are satisfied anz) < wo(G),
thenoy., s(a) = {s(A)}. Thus,(G(t)),>0 has MAEG.

Proof. Sincew.(G) < wo(G), the peripheral spectrum,., .4 is the point spec-
trum and, by Theorem 71, must be finite and non-empty. The only way for it to
be additively cyclic is to consist of one point. O

In general case this result will follow from Theorem 72 whose proof is much
more involved. After this interlude let us return to the discussion of Theorem 72.

Proof. We may assume(A) = 0. Let us start with the case thatAd) = 0
is a pole of R(\, A) of order 1. Assume thav € o, s4). Using the Spectral
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Mapping Theorem for the resolvent and (13) we find that for any p(A) we
have
(A —iv)' € Do (R(\, A)) C o, (R(A, A)).

The problem we face is thdt — iv)~! is an approximate eigenvalue. Using
considerations of Paragraph 2.2.2, we embed the problem into the ultrapower
so that the approximate eigenvalues become eigenvalues of the extended opera-

—

tor. The snag is that the extended resolvBid) := R()\, A) is no longer the
resolvent of a densely defined operatorifs unbounded. It is however, a pseu-
doresolvent with the same domain of definition, which satisfies the same estimate
as the resolvent of the generator of a positive semigroup (Theorem 42 (iii)):

IRN)E| < RORAN)|E],  z€ X, RA> 0. (167)

By Theorem 5\ — iv)~! is an eigenvalue and a pole &f\) of the same
order. Fixing\ € C with R\ > 0, there isu satisfying

R\t = (A — i)'

and, by properties of pseudo-resolvents, the above equation is satisfied Xor all
with ®\ > 0. Summarizing, we have

RN = (A—iv)'a, RA>0,
ARN)|al > |4, A >0, (168)

where the second relation follows from the first and (167). Nowifere a quasi-
interior point and if we had equality in the second relation, then we would be in
the position to use Lemma 6 with = R(\) andT' = R(R)\) to get

AR(N) = STIAR(N +iv) S,
for all A\, R\ > 0 (by analytic continuation).
Replacing\ by A + iv on the right hand side and iterating we obtain
AR(N) = S7EAR(N + ikv)SF
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and, applying this téu|, we obtain
STEAR(N + ikv)SF|u| = S7FAR(N + ikv)uF

= ARN)|u| = [u], RX>0,keZ,

or
AR\ + ikv)ub = o

so that the peripheral spectrum]é(/\) and thus of the generator would be cyclic.

As we noted, there are two snags. One is thad not necessarily a quasi-
interior point. This, however, can be remedied by restricting considerations to
the closed ideak,. The second, that we have inequality rather than equality in
the second relation of (168). This is a more serious problem, though a solution
is similar if much more technically involved. Sin¢é| > 0, there is a positive
functional such that ||, ¢ >.

As we noted, sinca = 0 is a first order pole oRR(\, A), it is also a first order
pole for 2()\), which means thafAR()\); 0 < A < 1} and So{AR(\)*¢; 0 <
A < 1} are norm bounded. Léh,,),cn converge to zero. Theph, R(\,)*¢}, is
weak- relatively compact and thus have a weakecumulation point, say;. It
can be proved that

<2, ARN)¢ >=<z,0>, z€X,
and by properties of pseudo-resolvents, this extends fovaith )\ > 0. In other
words,¢ = AR(\)o.
Furthermore,
< il ¢ ><< lal, o ><< ARN)|al, ¢ >=< |i], \R(A)"¢ >

and, since< |u|, ¢ > is independent of, we obtain< |ul, ¢ >.

Next, for arbitraryi € X we have
< |RNil,¢ > < < RRN|i],¢ >
=< &, RRN)" ¢ > = RAX'< |2, 0>
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which means that the idedl = {# € X; < |z|,¢ >= 0} is R()\) invariant.
Denote byR()\) the canonical image aR()) in the quotient spac&’/I; in the
same wayt denotes the canonical imagefThen, since the canonical injection
is a lattice homeomorphism (see Example 9), we obtain

IR(N)Z| < RRN)|E, e X/I,RA>0

and, obviously

R\ = (A —iv) 'a.

Moreover,< 4], ¢ >> 0 which meansi # 0 in X/I and
< Rl —lal, ¢ >=

which is the same a&()\)|i| = |@| which means that we can use the argument
above to obtain

AR\ +ikv)a* = 0¥, k€ Z, R\ > 0.

This means thatkr € o(A) and the statement is proved fefA) being a first
order pole.

Let A\ = 0 be a pole of ordep > 2 and suppose we can prove the result for
poles of any order less than Define
Q= }\ILI[I) NP R(AA).
Then@ > 0is a bounded operator which, moreover satisfljes= AQ) = 0. The
ideal
I={z€X; Qla| =0}

is (G(t))+>o-invariant and thus we can consider the problem in the quotient lattice
X = X/I on which the canonical imagg is zero. This implies that = 0 is a
pole of order less thap of the canonical image of the resolvent and the prove is
finished by induction. O

As we said earlier, Theorem 72 yields Corollary 19 in full generality.
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Corollary 20 Let (G(t)):>o be a positive semigroup satisfying(G) < wo(G).
Theno,e, sa) = {s(A)}. Thus,(G(t)):>0 has MAEG.

Note that assumption. (G) < wy(G) ensures that(A) is a pole of R(A, A).

The next step towards AEG requires irreducibility of the semigroup.

6.2.1 Peripheral spectrum of irreducible semigroups

Let (G(t)):>0 be a positive semigroup on a Banach latticgenerated byl. Re-

call that a closed idedl’ C X is said to be invariant und¢6(t)),>o (or {G(t)}-
invariant) if it is G(¢)-invariant for anyt > 0. The semigroupgG(t)):>o is called
irreducible if {0} and X are the only{ G(¢) }-invariant ideals ofX. Furthermore,
(G(t))+>0 Is called strongly irreducible iZ(¢) is a strongly irreducible operator

for anyt > 0 (that is, if G(t)u is a quasi-interior point for ang < u € X).
Clearly, strongly irreducible semigroup is irreducible (see Paragraph 3.3). We
have the following characterization of irreducible semigroups.

Proposition 20 For a positive semigroup8=(t));>o on a Banach latticeX, the
following are equivalent:

() (G(t))¢>0 is irreducible;

(i) Forevery0 < x € X and0 < ¢ € X*, there exist¢ > 0 such that
<o, G(t)z>> 0;

(iii) R(A, A) is strongly irreducible for all (some) > s(A);

(iv) R(A, A) isirreducible for all (some) > s(A).
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Proof. (i) = (ii) For0 < ¢ € X* we define
E={xr e X;<¢,G(t)|x|>>=0for all t > 0}.

This is a closed G(t) }-invariant ideal inX. Since(G(t)):>o is irreducible and
E # X, we haveE = {0} which gives(ii). (ii) = (ii7) Take0 < v € X and
A > s(A). From (79) we have

o0

<¢, R(\, A)u>= /e)‘t <o, G(t)u> dt > 0

0

which shows tha?(\, A)u is a quasi-interior point for any.
(7i1) = (iv) Obvious.

(1v) = (i) Using again (79) we see that the closed linear spa(af A)E is
contained in the closed linear span{af(¢)E; t > 0}. If E'is {G(t)}-invariant,
thenR(\, E) C E. [J Much more information about the spectrum can
be obtained i G(¢)):>o is an irreducible semigroup (see Paragraph We have
the following main theorem.

Theorem 74 Let (G(t)):>0 be a positive irreducible semigroup generated by
and lets(A) > —oo be a pole of the resolveit(\, A). Then:

1. s(A) is a first-order pole with geometric multiplicity 1; moreover there ex-
ists a quasi-interior point, € X, satisfying
Az = s(A)xy,
and a strictly positiver; € X7 such that
A'xg = s(A)xg.

2. Opers(a) = S(A) +ivZ for somer > 0 and all elements of,., s 4) are
first-order poles of?(\, A) with algebraic multiplicity 1.
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Proof. As usual assume(A) = 0 and letp be the order of the polé of
R(\, A). Define
Q = lim \’R()\, A).

A—0
If p > 1then, by (26)Q* = B?, = B_y,11 = 0as—2p+ 1 < —p. On the other
hand, consider again thé&:(¢)).>, invariant ideal

I ={z € X; Qlz| =0}.

By irreducibility, I = {0} (as it cannot beX due toQ # 0). Thus,Q?* # 0 and
this contradiction proves = 1.

The operator) is thus a positive projection oR'er A. Letx € X, be such
thatQz = o # 0. SinceAQ = QA, we haveAxr, = 0 and, by the Spectral
Mapping Theorem for point spectrurtii(t)zq = x, for anyt > 0 and X, is
a (G(t))s>o invariant ideal yielding, by irreducibilityX = X,,. Hence,z is a
guasi-interior point.

SinceQ* is a positive projection ofer A*, let us considex = Q*z*; then
A*z§ = 0andG(t)*zf = xj. Consequently,

J={r e X; <|z|,xg >= 0}

is a(G(t))+>o invariant closed ideal and thus = {0}. This means that; is
strictly positive. We can normalize it so thatx, zj; >= 1.

To prove that) is simple, first let us consider > 0 satisfyingAx = 0 and
normalized to< z, zj; >= 1. Since we have

G(t)x = x| 2 [G(t)(2 = z0)| = | — ]

henceAlxr — x| = 0. If G(t)|xr — zo| > |z — x|, then, by strict positivity
of zf, < G(t)|xr — zol|,z§ >>< |x — x|,z >. This is, however, impossible,
as< G(t)|x — x|, z§ >=< G(t)|zr — xo|, G(t)*z§ >=< |v — x¢|,zy > Thus
G(t)|z — xo| = |z — xo| and consequentlyt|z — xo| = |z — xo|. Defineu = |x —
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xo|+ (x —x0) = 2sup{(x—1x0),0} = 2(z—x¢)* andv == |z —xo| — (x—x9) =
2inf{(z — x¢),0} = 2(z — xp)~. Thus,u,v € X, andAu = Av = 0. By the
above,u, v are quasi-interior points, @. If both were non-zero, then both would
be weak units. On the other hand, they are disjoint, hence eitkef or v = 0,
so one of them must be 0. Assume= 0. Then|z — zy| = (z — x) and thus
<o — x|, 2§ >=< z, x5 > — < xp, x5 >=1—1 = 0, which yieldsz = x.
The case: = 0 is analogous.

The next step is taking arbitrary € X satisfyingAy = 0. We writey =
yT—y~. SinceG(t)y = y, we havdy| = |G(t)y)| < G(t)|y| and, by the argument
of the previous paragraph, we figd{¢)|y| = |y|. Thus we hav& (t)(y™ —y~) =
yt —y andG(t)(y" +y) =y +y~, yielding G(t)y* = y*. Using again
the argument of the previous paragraph, we find=< y*, 2, > z, which gives
y =< Yo, x4 > xo and proves geometric simplicity ef A) = 0.

To prove the second statement, we note that elements.of 1) belong to
do(A) and thus can be converted into eigenvalues by embedding the problem into
the ultrapowerX . Details are, however, quite involved and we omit them here,
see [38, p. 314]. Assume the,, ,4) = 0,(A). From Theorem 72 we know that
Tper,s(4) 1S Cyclic and sincé is an isolated point, it follows that,., ;1) = wZ
for somerv > 0. Letiv € 0persa) SO thatAu = ivu for some0 # u € X.
ThenG(t)u = e™'u and thusG (t)|u| > |G(t)u| = |u| and, as in the first part of
the proof, we find=(t)|u| = |u| or AJu| = 0. This givesAR(\, A)|u| = |u| and
AR(A +iv, A)u = u for A € C with RA > 0. As in the discussion of the proof
of Theorem 72, we se8R(\ + ikv, A)u* = u* or, equivalently,Au* = ikvu*,
Sinceu is a quasi-interior point ok we can claim, as in Lemma 6, that actually

R\ A) = S, *R(\ + ikv, A)SE.

Sinces(A) = 0 is a first-order pole, we see that every element,of ; 4y has the
same property. ([l
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Hence we can state the final result in our quest for asynchronous exponential
growth.

Corollary 21 If (G(t)):>0 is a positive and irreducible semigroup with(G) <
wo(G), thenoy,., sa) = {s(A)} ands(A) is a simple eigenvalue admitting a posi-
tive eigenvector. Thu$((¢)):>o has positive AEG.

The problem is to find working techniques which would allow to determine whether
(G(t))+>0 satisfies the assumptions of Corollary 21. As for generation, the most
fruitful approach seems to be through perturbations. We shall explore several such
techniques in the next subsection.

6.3 Compactness, positivity and irreducibility of perturbed semi-
groups

In Subsection 4.6 we discussed various perturbation theorems ensuring the exis-
tence of the semigroup associated witht B. In this section we shall discuss

to which extent the asymptotic behaviour of the perturbed semigroup is related to
that of the original one. We shall focus on bounded perturbations. Let us recall
that, by Theorem 46, in this case the perturbed semigfGup 5(t)):>o is related

to (G'a(t))+>0 by the Duhamel equation:

t
Garp(t)r = Ga(t)x + /GA(t — $)BGaip(s)zds, t >0,z € X (169)
0

where the integral is defined in the strong operator topology. More@vet, 5 (t)):>o
is given by the Dyson—Phillips series obtained by iterating (87):

Garp(t) = Z Gn(t), (170)
n=0
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whereGy(t) = G4(t) and
t

Gnii(t)r = /GA(t — 8)BG,(s)xds. t>0,xeX. (171)
0

The series converges in the operator norni X ) and uniformly fort in bounded
intervals.

6.3.1 Compact and weakly compact perturbations

A model result related to the main question discussed here is

Theorem 75 [26, p. 258] Let(G 4(t)):>o be strongly continuous semigroup on a
Banach spac&’ generated byl and letB be a compact operator. (74, 5(t))i>0
is the semigroup generated by+ B, thenG 4. 5(t) — G 4(t) is compact for all
t > 0. In particular
we(A+ B) = w.(A). (172)

The proof of this results, as well as of the results below, heavily depends on the
convex compactness propeniyhich we will discuss below.

Theorem 76 If B: Q — L(X,Y) is abounded and strongly measurable function
on a finite measure spac€, du) such that3(w) is a compact operator for each
w € Q, then the integral[ B(w)dy,, is compact as well.

Q

Proof. There are many proofs of this result. We sketch one of them, specified to
our particular cas#(s) = Ga(t — s)BS(s), whereS is a strongly continuous
function, s € [0,t] andt is fixed. The functiolR, x X > (t,z) — Ga(t)x is

135



jointly continuous. Furthermore, since a strongly continuous function is uniformly
continuous on compact sets, the set

M = {G4(s)Bzx s € [0,1], ||z|| < ¢}

is relatively compact inX'. Having in mind that the Riemann integral is the norm
t

limit of Riemann sums, we find thatt) ™ [ Ga(t — s)BS(s)zds is an element
0

of the closed convex hull o/ providedc = sup{||S(s)z|); s € [0,¢], ||z|| < 1}.
Since the closed convex hull of a relatively compact set is compact, the statement
follows. O

The assumption of compactness of the perturbing operator is often too restric-
tive. We mentioned earlier that integral operators with natural kernels in important
L, spaces are not compact but weakly compact. Fortunately, the convex (weak)
compactness property holds in this case as well, though the proof in general case
is much more delicate.

Theorem 77 [44] If B : Q — L(X,Y) is a bounded strongly measurable func-
tion on a finite measure spa¢®, dy) such that3(w) is a weakly compact opera-
tor for eachw € Q, then the integral/ B(w)dy,, is compact as well.

Q

Proof. We sketch here a simple proof of this fact, from [37] wh&n= Y =

L1(Q, dv) with © beingo-finite. By EberleinSmulian theorem, weak compact-
ness is equivalent to weak sequential compactness, as so we can restrict our at-
tention to separablé& (by considering closed spans of sequences). The crucial
ingredient of the proof is the criterion of weak compactnesg.insee [24, p.

292)): the setF C L,(12,dv) is relatively weakly compact if and only if for any
decreasing nested sequetige);cn C €2 of measurable sets satisfyify, 2; = 0

we have

ferE

sup [ |f(2)|dv, — 0
/

136



asj — oo. Thus, we consider

sup/ /B Jrdu,|(2)| dv.< / sup /|[B(w)x](z)|dl/z d iy,
[l=]I<1 Izl <1

Q; Q;

where we used the fact that

Q2>w— sup /|[B(w)m](2)]dvz

<1
Jali<1J
is measurable on account of separabilityXof

SinceB(w) is weakly compact, we have

sup / 1B(w)a](2)|dv. — 0

IIwHSIQj
asj — oo. Since
sup / 1B@)a]()ldv < sup [Bwallz, < C
lel<1 l|lz|| <1

on account of boundedness of the fantiliw), the dominated convergence theo-
rem ends the proof. O

With Theorem 76, the proof of Theorem 75 is immediate, since compact per-
turbations do not change the essential spectrum.

For weakly compact perturbations the situation is more delicate: clearly we
know that the differencér . 5(t) — G4(t) is weakly compact but this does not
yield equality of essential spectral types. Restricting, however, our attention to
spaced.;, we know that the square of a weakly compact operator is compact and
we should be able to use Theorem 6 for power compact operators.
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Unfortunately, the situation is still not obvious, as the relation between the
spectra ofA and A + B is determined by properties @f(\, A)B (or BR(\, A))
and not ofB: for A € p(A)

A€ o(A+ B) & 1ea(BRA)) < 1€ a(RN A)B).

This situation prompted Voigt [46] to introduce conceptd gbower compact and
strictly power compact operator§: is said to bel’ power compact ol\ € p(7T))

if there isn such that(CR(\,T))™ is compact for\ € A. C'is strictly power
compact if DC' is power compact for any boundéd

We note that Voigt introduces in [46] yet another 'essential spectrum’ of an
operatorC'. However, the unbounded component of his essential spectrum coin-
cides with the unbounded component of the set of all Fredholm pointsanid
thus the essential spectral radii determined by all these definitions coincide. The
main result needed here is

Theorem 78 [46, Corollary 1.4] If C' and T" are bounded and” is T power
compact on the unbounded component(of), then the unbounded components
of the Voigt’'s essential spectrumBfand7” + C' coincide.

By the remark above the theorem, unbounded components of essential spectra of
T andT + C coincide and thus

re(T) = r (T + C). (173)

The importance of this result here is due to the fact that weakly compact operators
form an ideal; that is, ifC' is weakly compact, thetlC and C'A are weakly
compact for any bounded. Thus, in anyL; space, weakly compact operators
are strictly power compact withAC)?, (C'A)* compact. Hence, arguing as for
Theorem 75 with the aid of Theorem 77 we arrive at the following result.

Corollary 22 If (G a(t)):>0 Is @ strongly continuous semigroup on a Banach space
X = L(92) generated byl and letB be a weakly compact operator.(l 4 5 () ):>o
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is the semigroup generated by+ B, thenG 4. 5(t) — G 4(t) is a strictly power
compact for allt > 0. Hence, in particular

we(G/HB) = we(GA). (174)

6.3.2 Eventual uniform continuity of perturbed semigroups

If a semigroup is eventually uniformly continuous, then the Spectral Mapping
Theorem is valid. Moreover, many compactness results can be proved if the un-
derlying semigroup is eventually uniformly continuous. hence, we shall discuss
here a few relevant results for the perturbed semigroup.

If F"andG are strongly continuous operator valued functions, then the convo-

lution
t

(F+ G)(D)(x) = / F(t—)G(s)zds, t>0,0€X, (175
0
is well defined. We have the following basic result:

Lemma 7 If F'andG are strongly continuous, then

(i) If F'is uniformly continuous (resp., compact) @hoo), thenF « G andG x F
are uniformly continuous (resp., compact) @) oo);

(i) If £ is uniformly continuous (resp., compact) Gn co), andG is uniformly
continuous (resp., compact) 0, co), thenF « G andG x F are uniformly
continuous (resp., compact) ¢a + 3, 0o).
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Proof. (i) Fort > 0,h > 0 andz € X we have

lim [[(F = G)(t + h)o = (F = G)(0)]

< lim || / |F(t+h—s)—F(t—s)| sup |G(7)][||ds
AN T€[0,t]

t+h

+liny | / sup [|F(7)] sup 1G] l]lds
r€[0,]

T€[0,¢]

7

uniformly in ||z|| < 1. This shows continuity from the right. Continuity from the
left follows in the same way. The statement @& F' follows by symmetry.

Compactness follows directly from Theorem 76.

The uniform continuity in the statement (ii) follows through similar but more
detailed estimates. To prove compactness, wettaker+ 5 and if0 < s < t—a,
thent — s > cand ift — a < s < t, thens > 5. Now

t—a t

(FxG)(t)x = / F(t — s)G(s)xds + / F(t —s)G(s)xds

0 t—a

and the statement follows by applying Theorem 76 to each term. O

Consider the semigrou(gr 4 (t)):>o and the perturbed semigrot@ 4 5 (t)):>o-
From Duhamel formula we have

GA_;,_B:GA+GA*BGA+B:GA+GAB*GA+B. (176)
We define the Volterra operator associated with this problem as
VF =Gp* BF =G B+ F

for any strongly continuous'.

We have the following result.
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Theorem 79 Suppose3 is bounded. Then

(@) If (G a(t)):>0 is immediately uniformly continuous (resp., compact), then the
same holds fofG 4 5(t))>o0;

(b) If (G (t))+>0 is uniformly continuous (resp., compact) @n co) and if there
existsk € N such thatV*G, is uniformly continuous (resp., compact)
on (0,00), then(G 44 5(t))+>o is uniformly continuous (resp., compact) on
(ka, 00).

Proof. (i) follows immediately from Lemma 7 (i) a&'4.p = G4 + G4 *
BG g4 .

To prove (ii) we note that by Dyson-Phillips expansion

k

Garp(t) =Y V'Ga(t) + i VI (VEGA())

n=0 n=1

where the series converges in uniform operator topology on compact intervals by
Theorem 46. The terms in the first part are uniformly continuous (resp., compact)
on (ka, 0o) by Lemma 7 (ii). The second part can be written as

SOV VEGA) = Gk BOFGA) + Gax B(Gax VEGaA) + ...

n=1

where each term is uniformly continuous @noo) by Lemma 7 (i) and converges
in uniform operator topology, as above. O

6.3.3 Irreducibility of perturbed semigroups.

Here we assume thati 4(t));>o is a positive semigroup ang is aa bounded
positive operator. TheBR(\, A) are positive for sufficiently larga (A > s(A))
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and the terms of Dyson-Phillips expansidfiG 4(¢) are positive operators for
t > 0. The last statement follows from the fact that iterates defining this expansion
are positive by (90). As a consequence, we have

O S GA(t) S GA+B(t)
and consequently

wo(A) S WO(A + B)

The formula (86) shows that for sufficiently large= R we have
0<R(\A) <R(NA+DB)

so that
s(A) < s(A+ B).

This follows, e.g. from the fact that is we approagii) then R(\, A) blows up
and thusR(A, A + B) must blow up, hence(A) ¢ p(A + B).

Theorem 80 Let X be a Banach lattice,G 4(t)):>o @ positive semigroup angt a
positive bounded operator. The perturbed semigr@lp, 5 (t)):>o is irreducible
if and only if/ = {0} and I = X are the only closed ideals satisfying

(@) Ga(t)I CI,t>0,
(b) BI C I.
Proof. Assume thatG 4, 5(t)):>0 is irreducible and lef satisfies (a) and (b).

Using Proposition 20, we obtai(\, A)I C I. HenceK (\)I = R(\, A)BI C I.
By (86) we obtainR(\, A+ B)I C I and thus/ = {0} or I = X.

To prove the converse, assuthe- {0} and/ = X are the only closed ideals
satisfying (a) and (b). We show that tig\, A + B) is irreducible which is
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equivalent, again by Proposition 20, to irreducibility (6% 4 5(t)):>0. SO, let/
be a closed ideal satisfying(\, A + B)I C I for A > s(A) andz € I. We have

IR\, A)z| < RO\, A)|z] < RO\, A+ B)|a| €T

that isR(A\, A)I C I and, equivalentlyz4(¢)I C I. Take againc € I; then for
A > s(A)

|R(\, A)BR(\, A+ B)x| < R(\A)BR(M A+ B)l|z|
=(R(\ A+ B)— R\ A))|z] < RN Azl el
where we used (86). Thus, for> s(A) we have also
R(u, A)R(\, A)BR(\,A+ B)x € X
providedz € I. Using the resolvent equation, we get
(R(p, A) — R(\,A))BR(\, A+ B)x € 1,
hence, by linearity of,

R(u, A)BR(\, A+ B)x € 1,

We multiply the above by, let A\ — oo, useAR(\, A+ B)x — = and closedness
of I to obtainR(u, A)Bx € 1. Multiplying the latter byu and repeating the
argument we obtai®x € I hencel is B invariant.

Thus (a) and (b) are satisfied yieldihg= {0} or I = X and henc€G 4 5(t)):>o
is irreducible. OJ

6.3.4 A model of evolution of a blood cell population

We consider a population of blood cells distinguished only by their size and de-
scribe the population by the density functioft, s) of cells having size in time
t. The following processes take place when the time passes:
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1. Each cell grows linearly in time;
2. Each cell dies with a probability depending on size;

3. Each cell divides into two daughter cells of equal size with a probability
depending on size;

Moreover, we assume that there exists a maximal cell size (here normalized to 1);
also there exists a minimal cell size= o > 0 below which no division can occur.

As a consequence of the last assumption, if we start with initial population with
sizes greater that/2, the size of each cell in the population must satisfy «/2

and we can assume the boundary condition

n(t,a/2) =0, t>0.

These assumption lead to the following evolution equation:

ng(t,s) = —ng(t,s) — u(s)n(t,s) — b(s)n(t,s)
+4b(2s)n(t, 25)X[a/2,1/21(5), s> a/2,t>0
u(0,s) = mno(s), a77)

wherey 4 is the characteristic function of the sét We assume that the death
rate . is a positive continuous function dn/2, 1]. The division rate should be
continuous withh(s) > 0 on(«, 1) andb(s) = 0 elsewhere.

We consider this equation as an abstract evolution equati®nanL, ([« /2, 1], dx)
and define operators

Af =—f —(u+b)f (178)
onD(A) = Wh([a/2,1]) and
(Bf)(s) = 4b(2s)n(t, 25)X (/2,172 () (179)

on D(B) = X (since multiplication by 2 is bi-lipschitz, the composition is well-
defined) as an operation .
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Hence, we define

K=A+B, D(K)=D(A).
The following result is standard.

Lemma 8 The operator A, D(A)) generates &';,-semigroup explicitly given by

- | wrybtryar
Gat)f =14 ¢ f(s—1) for s—t>a/2 (180)

0 otherwise.
The spectrum ofl is empty and the resolvei(\, A), given explicitly by
/ - f(u(T)-‘rb(T))dT
(RO A)g)() = [ ¢ 9(0)do (181)
/2

IS compact.
We have also

Lemma 9 The semigroupX (t)):>o is eventually uniformly continuous and even-
tually compact fort > 1 — a/2.

Proof. To prove eventual uniform continuity, we first note that.(t));>o is
zero fort > 1 — «/2 and thus uniformly continuous on this interval. Hence, by
Theorem 79 (ii), it suffices to prove immediate uniform continuity of some term
of the Dyson-Phillips expansion. It turns out tRat7 4, is immediately uniform
continuous and hendé (t));>¢ is uniformly continuous fot > 1 — «/2.

To prove compactness, we note tHat\, A) is compact and, a&(\, K) is
given by uniformly converging series (86) of compact operatB(3, K) is com-
pact as well. HenceR(\, A)Gk (t) is compact for such.
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It is interesting that this implies compactnesg6fx () ):>o. Indeed, defining
t
R(t)x = [ Gk(s)xds, we haveAR(t)x = Gk (t)r — x and
0
R(t) = R\ A)(I —Gk(t)) + AR(N, A)R(t)x
so that, for a fixedy > 1 — «/2,

R(ty+h) — R(ty) = —R(\ A)Grlto+ h) — Gx(to)]
AR\, A)[R(to + h) — R(to))]. (182)

Since(Gk(t))i>o is uniformly continuous at,
G (to) = lim b~ (R(to + h) — R(to))

in the uniform topology. Since the first term on the right-hand side in (182) is
compact and the second converges i\, A)Gk (to), which is compact(z x (¢o)
is compact. Thus, we get compactnessifor 1 — a/2. OJ

We note that eventual compactness implie§€~ ) = —oo and hence clearly
we(GK) < WO(GK).

The final step is to establish irreducibility 0 x (¢)):>o-
Lemma 10 The semigroupGx (t)):>o is irreducible.

Proof. Let us analyse how the resolvent
R\ K)=R(\A)+ RN A)BRNA)+ ...

acts on functions with support (a.e) gy, 1| (precisely,s; = sup{s} such that
suppf C [s,1]. Then, by (181),R(\, A)f > 0 on (sg, 1], BR(A\, A)f > 0 on
(s0/2,1/2], R(\, B)BR(\, A)f > 0o0n(sy/2,1] and, continuingR(\, K)f > 0
on [«/2,1]. Using the description of ideals ih;, Example 10, we see that no
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closed non-trivial ideal can be invariant undef\, X') and, by Proposition 20,
we obtain irreducibility of the semigroup. O

We collect all the information in the following summarising theorem.
Theorem 81 Let (G (t)):>o0 be theCy-semigroup corresponding to (186). Then

there is a dominant eigenvalue equakto!) and the corresponding 1-dimensional
positive projectionP such that

le™ WG (t) — P| < Me™

for someM, e > 0 and allt > 0. Thus,(Gk(t)):>0 has a positive AEG.
The dominant eigenvalue can be found by solving a scalar equation.

Proposition 21 Assumex > 1/2. The spectruna(K) only consists of eigenval-
ues which are solutions of the characteristic equation

1/2 20
— T)+b(T)+N)dT
£ = —1 4 /41)(20)@ A ) (183)
a/2

The spectral bound(A) is the unique\, € R, for which&(\g) = 0. The semi-
group (Gk (t)):>o is stable if and only i€ (0) < 0.

Proof. The first statement follows from the fact thathas a compact resolvent.

For the second statement we have to solye- K f = 0; that is

Af(s) + f'(s) + (u(s) +b(s))f(s) =0, for se€[1/21],
A(5) + F(5) + (ls) + b(s)) () — 4b(25) f(25) = 0,
for s€[a/2,5/2). (184)
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Solving the first equation with a normalizing conditigfll) = 1 yields

1
S (p(o)+b(c)+N)do
f(s) =€
for s € [1/2,1]. Turning to the second equation we see thatdf [«/2,1/2], then
the argumeng(2s) varies between and1 and we can substitute

1
J (1(o)+b(a)+X)
f(2s) = e g do,
at least on the interval /4, 1/2] and solve the second equation in (184) as a non-
homogeneous equation. Taking into account that the solution must be continuous
ats = 1/2, we obtain
J () +5(e)+3) Y T (u(r) b+
o)+b(o)+N)do — 7)+b(T)+N)dT
f(s) =es 8 1-— 4/1)(20)6 "

This solution must satisfy the boundary conditiffxv/2) = 0, which gives the
desired form of the characteristic function in (183). Next, the functipme-
stricted toR is continuous, strictly decreasing withm, . ., {(\) = +oo and
limy_,. £(A) = —1 and hence has exactly one real solutign This solution is
negative only if¢(0) < 0. O

6.3.5 Emergence of chaos in the blood cell model

Consider a slightly modified blood cell evolution model (at the beginning, without
death and division terms). the transport equation

up = —xu, + 0.5u,  u(x,0) = ug(x), (185)

in the spacé.; ([0, 1]). This equation, was analysed in [W] in the space of continu-
ous function and the occurrence of chaos was attributed to the insufficient supply
of the most primitive blood cells. It was also investigated in the same space in
[Rud, LM] in the statistical framework using the concept of exactness.
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Let u(0,z) = up(z),0 < = < 1. The explicit solution to (185) is given by
u(t, r) = T(t)uo(x) = e*ug(ze~"). We use Theorem 36. The eigenfunctions of
the generator are found to bg(x) = 2=**1/2 provided\ € U = {Re) < 3/2}.
Thus the first assumption of Theorem 36 is satisfied.

Consider now the function
1
Fylg] = / a M2 g(x)d
0

whereg € L ([0,1]). By z="1/2 = (Inz)z~*/2 we see thaF) [¢] is analytic
in U. Changing variable according to= — In x we obtain

1 0o
0= /I’\“/Qg(x)dx — /e(éﬂze,\)z (efzg(efz)) pilmAz g
0 0

Now, the functionF'(z) = e(-2+ReN= (¢=2g(¢~%)) is in Ly ([0, o0]) for the stip-
ulated range of\ and Im\ is not restricted, thus the above integral represents
the classical Fourier transform of a function extended lbgr = < 0. Since the
transform is zerog(z) = 0 for all .

Next we consider a more sophisticated version of (185)

u(t,x) = —aug(t,x) +nu(t,x) + 48u(t, 22)x0,1/2 (®)
u(0.2) = o(x) (186)

in Ly([0,1],dz), wherey 4 is the characteristic function of the sét Change of
variablesr = e ¥,y > 0 gives

Ut<t7 y) = Uy(t7 y) + UU(ta l’) + 45”@7 y— In 2)X[ln2,oo}(y)
u(0,y) = (y) = (e (187)

in X = L;([0,00), e ¥dy). A nice way to find the eigenvectors (El Mourchid) is
to consider the recurrence fof := v|p,1n2,(n+1)m2)

¥ = B, y € [0,In2),

149



vy = (A=nv" - 480" (y — In2),
y€nn2 (n+1)ln2),n>1

which gives formal eigenvectors as

n (_4567()\777) 1n2)n

V" (y) = A=y Z

k=0

(y —nln2)" (188)
n!
fornln2 <y < (n+ 1) In2. Combining and rearranging terms (justified later by
absolute convergence), we get

S~ —4 —(A=n)In2\n
na(y) = et 3 EAFT)

n=0

nl (y —nln 2)nX[n In 2,00) (y) (189)

Estimating the terms of the seriesin(R,, e ¥dy) we have

(4ﬁ67(§}%)\717) 1n2>n
n!

/ e~ =R Dy (4 In 2)"dy

nln2
o)

_ <2ﬂ>n /e(nﬂ?)\+1)zzndz

0
_ 26\’
B (77—9?)\—1-1)

and we see that the series fgris convergent in the half-plarle\ < n + 1 — 203
and uniformly convergent is any closed half-plane contained in it. It is easy to see
that each term of the series is of the form

A= 6(N) = (y)

wherea is a constant and is such that the above function is integrable (with
weighte™Y) for any fixed\ with R\ < n+ 1 — 2. Thus, taking such,, A, with,
say,®R\; > R\, we have

[6(A1) — oMo < / |1 — ePemAlma)jhily=a) g (y)e vy
0
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we see that the term between the absolute bars is bounded. Hence, by the domi-
nated convergence,is continuous and, by the uniform convergence of the series,

vy IS a continuous function of. Consequently, if)y + 1 — 24 > 0, the dynamics
generated by (186) is subchaaotic.

7 Asymptotic analysis of singularly perturbed dy-
namical systems

The goal of this section is to give a concise explanation of concepts of asymp-
totic analysis and, in particular, of one technique of the asymptotic analysis which
essentially stems from the Chapman-Enskog procedure.

In order to introduce this asymptotic procedure, let us consider a particular
case of singularly perturbed abstract initial value problem

of. |
ot Sfe+2Cle (190)
fe(o) = an

where the presence of the small parametedicates that the phenomenon mod-
elled by the operatar’ is more relevant than that modelled Byr, in other words,
they act on different time scales.

As elsewhere in these lectures, we are concerned with kinetic type problems
and the operatof describes some form of transport, wheréass an interac-
tion/transition operator describing interstate transfers, e.g., they may be collision
operator in the kinetic problems or a transition matrix in the structured population
theory.

We are often interested in situations when the transition processes between
structure states are dominant. If this is the case, the population quickly becomes
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homogenised with respect to the structure and starts to behave as an unstructured,
governed by s suitable equations (which in analogy with the kinetic theory will

be calledhydrodynamiy. These equations should be the limit, or approximating,
equation for (190) as — 0 (the parameter in such a case is related to the mean
free time between state switches).

To put this in a mathematical framework, we can suppose to have on the right-
hand side a family of operatof&’.}..o = {S + 1C}.o acting in a suitable
Banach spaceX, and a given initial datum. The classical asymptotic analysis
consists in looking for a solution in the form of a truncated power series

FOUE) = folt) + efa(t) + Efo(t) + -+ + €' ful2),

and builds up an algorithm to determine the coefficiefgts, fo, ..., f». Then
£ (t) is an approximation of order to the solutionf.(¢) of the original equation
in the sense that we should have

1fe(t) = FE@®)]x = o(€"), (191)

for0 <t < T, whereT > 0.

It is important to note that the zeroth-order approximation satisfies
Cfo(t)=0

which is the mathematical expression of the fact that the hydrodynamic approx-
imation should be transition-free and that’s why the null-space of the dominant
collision operator is called thieydrodynamic spacef the problem.

Another important observation pertains to the fact that in most cases the limit
equation involves less independent variables than the original one. Thus the solu-
tion of the former cannot satisfy all boundary and initial conditions of the latter.
Such problems are callesthgularly perturbed|If, for example, the approximation
(191) does not hold in a neighbourhoodtef 0, then it is necessary to introduce
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aninitial layer correction by repeating the above procedure with rescaled time to
improve the convergence for small The original approximation which is valid
only away fromt = 0 is referred to as thbulk approximation

Similarly, there approximation could fail close to the spatial boundary of the
domain as well as close to the region where the spatial and temporal boundaries
meet. To improve accuracy in such cases one introduces the so4sailadary
andcorner layercorrections, but we will not discuss them here.

A first way to look at the problem from the point of view of the approximation
theory is to find, in a systematic way, a new (simpler) family of operators, still
depending on, sayB,, generating new evolution problems

0,
ot

supplemented by appropriate initial conditions, such that the solutignsof the
new evolution problem satisfy

= BeSOe,

1fe(t) = we(®)llx = o(e"), (192)

for0 <t < T, whereT > 0 andn > 1. In this case we say thds, is a
hydrodynamic approximation @f, to ordern.

This approach mathematically produces weaker results than solving system
(190) for eachr and eventually taking the limit of the solutionsas- 0. But in
real situation¢ is small but not zero, and it is interesting to find simpler operators
B, for modelling a particular regime of a physical system of interacting particles.

A slightly different point of view consists in requiring that the limiting equa-
tion for the approximate solution does not contairin other words, the task is
now to find a new (simpler) operator, s&y and a new evolution problem

d¢

Y _B
ot ¥

153



with an appropriate initial condition, such that the solutigris) of the new evo-
lution problem satisfy

[fe(t) = (B)[[x =0, as e =0, (193)

for0 <t <T,wherel > 0.

In this case we say thd is the hydrodynamic limit of operators, ase — 0.
This approach can be treated as (and in fact is) a particular version of the previous
one as very often the operatBris obtained as the first step in the procedure lead-
ing eventually to the family{ B.}.>o. For instance, for the nonlinear Boltzmann
equation with the original Hilbert scalind? would correspond to the Euler sys-
tem, wherea$3, could correspond to the Navier-Stokes system wittependent
viscosity, or to Burnett equation at yet higher level.

In this review | will focus on the first method which, in some sense, is dic-
tated by particular applications, where the scaling is given. The other may be
seen as more mathematical as one is then looking for suitable scalings of indepen-
dent variables and physical parameters which lead to the limiting equations not
depending o, see [10, 9].

In any case the asymptotic analysis, should consist of two main points:
- determining an algorithm which provides in a systematic way the approximat-
ing family B, (or the limit operatoiB),
- proving the convergence ¢f in the sense of (192) (or of (193)).
Even if the formal part and the rigorous part of an asymptotic analysis seem not

to be related, the formal procedure can be of great help in proving the convergence
theorems.

We will focus on the modification of the classical Chapman-Enskog procedure
which was adapted to a class of linear evolution equations by J.Mika at the end of
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the 1970s and later extended to singularly perturbed evolution equations arising
in the kinetic theory. The advantage of this procedure is that the projection of the
solution to the Boltzmann equation onto the null-space of the collision operator,
that is, the hydrodynamic part of the solution, is not expanded amd thus the
whole information carried by this part is kept together. This is in contrast to the
Hilbert type expansions, where, if applicable, only the zero order term of the
expansion of the hydrodynamic part is recovered from the limit equation.

The main feature of the modified Chapman-Enskog procedure is that the ini-
tial value problem is decomposed into two problems, for the kinetic and hydrody-
namic parts of the solution, respectively. This decomposition consists in splitting
the unknown function into the part belonging to the null spécef the opera-
tor C', which describes the dominant phenomenon, whereas the remaining part
belongs to the complementary subspéce

Thus the first step of the asymptotic procedure is finding the null-space of the
dominant collision operatof’; then the decomposition is performed using the
(spectral) projectiorP onto the null-spac& by applyingP? and the complemen-
tary projectionQ = I — P to equation (190). In this one obtains a system of
evolution equations in the subspadésand V. At this point the kinetic part of
the solution is expanded in seriesepbut the hydrodynamic part of the solution
is left unexpanded. In other words, we keep all orders of approximation of the
hydrodynamic part compressed into a single function.

One of the main drawback of the classical approach is that the initial layer
contribution is neglected and transitional effects are not taken into account. To
overcome this, two time scales are introduced in order to obtain the necessary
corrections. In general, the compressed asymptotic algorithm permits to derive in
a natural way the hydrodynamic equation, the initial condition to supplement it,
and the initial layer corrections.

Summarizing, the original Chapman-Enskog method is improved by the intro-

155



duction of two new ingredients:

- the projection of the original equation onto the hydrodynamic subspace,

- the analysis of the evolution equations in terms of the theory of semigroups.

Taking these new ingredients into account, we obtain the following main ad-
vantages:

- we can build an algorithm listing the steps of the procedure to be followed,

- we are able to establish all the mathematical properties of the full and limit
solutions needed for the rigorous convergence proof.

7.1 Compressed expansion

For clarity, we present the compressed method on a simplified model with the
small parameter appearing only in one place:

1

in a Banach spac&’. However, the analysis can be extended to more general
cases.

The success of the method depends on the spectral properties of the operators
S andC. To be able to start, we must assume that 0 is the dominant simple
eigenvalue of the operatGr

It is easy to see that this requirement amount§ teeing the generator of a
semigroup having AEG. The fact that= 0 needs to be dominant ensures an
exponential decay of the initial layer. This assumption may, however, be relaxed
if we are not that interested in the properties of the layer.
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Remark 12 In many cases we have several state variables and the op@aattyr
acts on some of them. Then the above requirement refers to the actian tifis
restricted space.

The corresponding eigenspace (the hydrodynamic spaCgisfthus one di-
mensional; we denote b} the spectral projection of the state space onto this
space. LelQ = 7 — P be the complementary projection. Accordingly, By =
v we denote the hydrodynamic part of the solutioand byQu = w the kinetic
part.

Applying these projections on both sides of (194) we get

v = PSPv+PSQuw
cw = €QSQw +eQSPv+ QCQuw, (195)

with the initial conditions
v(0) =0, w(0) = w,
whered = P 4, 0 = Q .

We have kept the superfluous symb®ls and Qu for the sake of notational
symmetry.

The projected operatd?SP vanishes for many types of linear equations and,
for simplicity, we perform analysis for such a case. Thus, we obtain the following
form of (195)

ov = PSQuw
ow = QSPv+ QSQw + QAQuw + éQCQw (196)
v(0) = 0, w(0)=w. (197)
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We represent the solution of (196) as a sum of the bulk and the initial layer
parts:

o(t) = B(t) +3(7), (198)
wt) = w(t) +alr), (199)

where, in this case. the variabtein the initial layer part is given by = ¢/e.
Other scalings may require different formulae for

Equations for the bulk part and the initial layer part are sought independently.

The following algorithm describes the main features of the compressed asymp-
totic procedure are:

Algorithm 1

1. The bulk approximation is not expanded into powers of

2. The bulk approximatiom is explicitly written in terms oft and expanded
in powers ofe.

3. The time derivativé),v and the initial value)(0) are expanded into powers

of e.
Thus
w = W+ ew; + O(e?),
U = T+et +O0(?), (200)
W = W+ e + O(e?).

Substituting the expansion far into (196) and comparing terms of the same
powers ofe yield

0,0 = PSQ(wy + ew; + O(£%)). (201)
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and
Wy = O,
W = —(QCQ) ' QSPw.

Inserting the expressions far, andw; into (201) gives the approximate ’diffu-
sion’ equation
0,0 = —ePSQ(QCQ) T QSPT + O(£?). (202)

For the initial layer a similar procedure yields

(1) = 0,

Orwg = QCQuby, (203)
0,0 = PSQiy, (204)
O,y = QCQw + Q8P + QS Q. (205)

We observe that, due t@, = 0, the initial condition forwy is w,(0) = w.
Solving (203) with this initial value allows to integrate (204) which gives

51(1) = PSQ(QCQ) e 1w, (206)

upon which@; (0) = PSQ(QCQ)~! w. This in turn allows one to determine
the initial condition for the diffusion equation: we have from (199) that=
9(0) + €01 (0) + O(e?) so that

5(0) = v —ePSQ(QCQ) ' w +O(£?). (207)
In what follows we adopt a uniform notation valid for all discussed examples.

In general, by we shall denote a solution of the "diffusion” equation determined
by discarding the(¢?) terms in (202), that is,

Op = —ePSQ(QCQ) ' QSPp. (208)
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Thus,p is expected to provide an approximationvoBy /) we denote the solution
of this equation with uncorrected initial conditig0) = © and by the solution
with the corrected initial value obtained by discarding the?) terms in (207),
that is,p(0) is given by

p(0) =0 —ePSQ(QCQ)™" w . (209)

Specific formulae will be given for each case separately. As we noted earlier, for
the the procedure to start, we nekd= 0 to be a simple eigenvalue which thus
admits a spectral projection onto its eigenspace. This condition is satisfied if, in
particular, this eigenvalue is isolated. However, the existence of exponentially de-
caying initial layer requires the operat@C Q to generate a semigroup of negative
type in QX. SinceQ commutes withC, the generation is obvious. However, to
ensure the negative type, it is necessary to &A@ Q) < 0. This condition is
equivalent toG¢(t)):>o having AEG.

7.1.1 Can we prove the convergence?

To this end we need to find an equation satisfied by the error which is defined as

y(t) = o(t) — [v(t) + etn(t/e)],
2(t) = w(t) = [wo(t/e) + e(wi(t) + wi(t/€))]. (210)

Inserting (formally) the error into (195) we obtain

Oy = PSPy+PSQz + PSP + €PSQuy,

1
Oz = QSPy+ QS09z + EQCQZ + eQS Qun
+eOSPH, + QS Quby — €dyiy. (211)

We observe that, denoting the total eridft) = y(t) + z(¢), the error system
(211) can be written as

OLE = (S—F%C)E—FEF—FGF
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Denoting by(G.(t)):>o the contractive semigroup generateddy ¢ 'C, we get

IE@)] < [EO)] + ¢ / |F(s)]ds + ¢ / VE(s)]|ds.

It can be proved thaf'(0) = O(e?) and so this equation yields the error of ap-
proximation to beO(¢), which is not good as we hawveorder terms in the ap-
proximation. A closer look at the term involving shows that it contains /¢
which, upon integration, produces anotheso that the initial condition and the
initial layer contribution to the error a@(e?). The fact that the contribution df

is alsoO(€?) is highly nontrivial but can be proved for a large class of problems.

It is important to note that the above considerations show that the presented
asymptotic procedurpotentially produces the convergence of the expected or-
der. Since in most cases we work with unbounded operators, every step must be
carefully justified.

7.1.2 How this works in practice: diffusion approximation of the telegraph
equation

Here the compressed asymptotic procedure is applied to the telegraph equation

at[” _s| Y+l “], (212)
w w e | w
where
S_ 0 —b0, - 0 O

—cOy 0 0 —d

or
oy + bo,w = 0,
Jw + cOv + gw =0, (213)
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with constant coefficients ¢, d and a small parameter> 0 .
The system (213) is supplemented by the initial conditions

v(0) =0,  w(0)=1w, (214)
and the homogeneous Dirichlet conditions

o(=1,8) = v(1,t) =0, t > 0. (215)

To avoid the effect of a boundary layer, we assumedtzatdw are three times
differentiable and

8,0 (£1) =0, w(£l) =0, dppw (£1) = 0. (216)

This system may describe the voltage and the current in a telegraphic cable, where
thea, b, c andd are the loss coefficient, the resistance, the capacity and the self
induction respectively or it can be considered as a simplified (two-velocity) linear
Boltzmann equation because the relevant spectral properties are similar.

The diffusion approximation can be derived from (208), using the compressed
asymptotic procedure, by taking

P_v __v
| w __O ’
_v _O
o] -1e]
Then ) )
v 0 —b0, vl 0
QSP[O_—Q[—Cﬁz 0 ][0]—_—6&0@]7
0 0 b3, || o [ bo,w
Pse __P[—cax 0 ][w]__ 0 ]’
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The inversg QCQ) ! is given by

Slo] oo
wor[2]-[ 2]

0 _ —%Cam v
S0z 0 '

Hence the approximation diffusion equation, as given by (208), is

b
Oup = == 02p. (217)

Then

PSQ(QCQ) 'QSP

(%
] -rse

The uncorrected initial condition js(0) = 5(0) = 0, whereas the corrected one
can be derived from (209) usif@SQ and(QCQ) " as calculated above, which
gives

p(0) =0 —ePSQ(QCQ) ™" w =0 —ggamﬁ; . (218)

The initial layer is derived from (206) and is given by
5,(1) = PSQ(QCQ) 1em 92 ) = ge—dfax{b, (219)

wherer = t/e.

Let us denote

Dy = {u € W([~1,1]); tlpmsr = 0, Z,ulp—41 = 0}
The following theorem is true.

Theorem 82 If ¥, we D; and the compatibility conditions (216) are satisfied.
Then there is a constaiit such that

lu(t) = p(t) — etr(t/e)]| < C*

uniformly on|0, co)
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7.1.3 Age structured population model

A seemingly similar system is offered by
1
on =Hn+ Mn + glCn, (220)

wheren = (ny,...,N),H = diag{—0a, ..., —0.}, M = diag{—p, ..., —pun},

K = {ki; }1<ij<n. Heren, is the population density of fish in pat¢hu is the age,

pi(a) is the mortality rate, and the coefficienits represent the migration rates
from patchj to patchi, j # i. The system was introduced to describe evolution of

a continuous age-structured population of sole which, however, is further divided
into patches (say, egg, larvae, juvenile and adult). The characteristic feature of
the population is daily vertical migration provoked by light intensity of which is
highly dependent on patches. The small parametarresponds to the fact that

the migration processes occur at a much faster time scale than the demographic
ones (aging and death). This system must be supplemented by the boundary con-
dition of the McKendrick-Von Forester type

(e 9]

n(0,t) = /B(a)n(a, t)da (221)
0
where(a) = diag{b:(a),...,bx(a)} gives the fertility at age and patches to
N. The initial condition is given by

n(a,0) = ®(a). (222)

The transition matriXC is a typical transition matrix (of a time-continuous pro-
cess); that is off-diagonal entries are positive and columns sumup/te further
assume that it generates an irreducibled{mensional) semigroup. Thugjs the
dominant eigenvalue of with a positive eigenvectos which will be fixed to
satisfyl -e = 1, wherel = (1,1...,1). The vectote = (e, - -, ex) represents
the stable patch structure; that is, asymptotic distribution of the population into
the patches. Thus, it is reasonable to approximate

n;

e = —, ’L:l,,N
n



wheren = Zf\il n;. Adding together equations in (220) and using the above we

obtain
on = —0,n — u*(a)n (223)

wherep* = 1 - Me = Zf\il w;e; i1s the so-called 'aggregate’ mortality. This
model, supplemented with appropriate averaged boundary condition is called the
aggregated model and is expected to provide averaged approximate description of
the population.

The assumptions allow to perform the compressed asymptotic analysis. The
spectral projection®, Q : R — R™ are given by

Px=(1-x)e, Ox=x—(1-x)e
which gives the hydrodynamical spake= Span{e} and the kinetic space
W=ImQ={x; 1-x=0},
as well as the solution decomposition
n=Pn+On=v+w=pe+w

wherep = p(a, t) is a scalar function. Applying the projections to both sides of
(220) we get

ov = P(H+ M)Pv+P(H+ M)Qu
ow = QH+M)Quw+ Q(H + M)Pv + %QICQw,

with projected initial conditions (0) = v, w(0) = w .

Denoting again by andw the bulk part of the solution and substituting the
expansion forw into (224) we obtain as before

W, = —(QKQ) ' Q(H + M)Pu.
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Inserting the expressions far, andw; into the expansion of the hydrodynamic
part of the system (224) gives the approximate 'diffusion’ equation

9,0 = P(H + M)Pt — eP(H + M)Q(QKQ) ' Q(H + M)P4.

The explicit expressions for the involved operators can be calculated as

P(H+ M)Pv = —(9,p—p(1- Me)e,
QH+ M)Po = —p(1- Me— M)e,
PH+M)Ox = —(1- Mx—1- Mx)e,

and, denoting by the unique solution if = QX of
Kh=—-(1-Me—- M)e
we obtain
P(H + M)Q(QKQ) ' Q(H + MPv = p(1 - Mh).
Therefore
O = —0up + p(1- Me + €1 - Mh)
or, taking into account the form 01, we obtain
Op = —0up — p'p + €(1 - Mh)p

so that the asymptotic procedure recovers the aggregated model (223) as well as
provides its first order correction.

We note that, contrary to the telegraph system, here we haven't obtained a dif-
fusion equation. The (mathematical) reason for this that in the telegraph equation
the transport operator appears on the anti-diagonal and thus provides 'mixing’ of
the hydrodynamic and kinetic parts of the equation. Here the transport occurs
only on the diagonal hence, at the transport level, the patches are not mixed and
this feature is preserved in the approximating equation.

In this model it is impossible to neglect effects of the boundary conditions and
thus one needs to analyse the boundary and corner layers as well as the initial
layer. However, we will not discuss them here.
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7.1.4 Fokker-Planck equation of Brownian motion

We conclude with a brief discussion of a more complicated example of the
Fokker-Planck equation describimgdimensional Brownian motion. The colli-
sion operato€ now is given by the three-dimensional differential operator

(Cu)(x, &) = 9¢(§ + O)u(w, ), (1)

x, & € R™ and the streaming operat8ris of the form

(Su)(x,§) = E0xu(, £). (2)

Hereu is the particle distribution function in the phase spacdenotes the posi-
tion and¢ the velocity of the particle.

The Fokker-Planck operator can be transformed to the well-known harmonic
oscillator operator: for the functiom(¢) we define = v/2¢ € R" and

I¢|2
2

y(¢) = (Au)(¢) == (V2)%e 2 u(V2(). (3)

2
This is an isometry of the spaég(R™, e d¢) onto Ly (R™, d¢) which transforms
the Fokker-Planck collision operat6rinto

~ 1 _le?
Cy= We E 82y — ICPPy + ny) . (4)

Dropping the normalizing factor we arrive at the harmonic oscillator operator in
Lo(R™), denoted hereafter i,

(Hy)(¢) = 9Zy(¢) — I¢IPy(C) + ny(Q). (5)

To analyse this operator we introduce the sesquilinear form

h@@=/@@ﬁﬂﬁ@+wma 6)

R
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defined originally onCs°(R™) and the Hilbert spacé&/; defined as the closure of
Cs°(R™) with respect to the normié| s, = +/h(¢, ¢). Let A, denote the operator
associated with It follows that the spectrum afl;, consists only of eigenvalues

and the operator itself can be expressed in terms of the series of its eigenfunctions.
Using the separation of variables and the one-dimensional theory of the harmonic
oscillator we obtain the following expression for the eigenfunctiong of

(-

(n) - 7
H, (O o (2\a|ﬂ-n/2a!)l/2

2 n
e'F o = T HO (@), (7)
=1
where( € R" anda = (ay, . . . ay,) IS @ multi-index.

HY is the normalized one-dimensional Hermite function corresponding to the
eigenvalue\,, = 2m + 1

-1 2 2
H,(¢) = ¥e%82”6_< : (8)
VA/T2mm)!
Let C denote the Fokker-Planck collision operator obtained fronby the inverse
transformation (3), and thus corresponding to the differential expression (1). For
k=1,...,nand the multi-indexd = (3, . .., Ox) we define

(k) . pA—177(k)
@ﬁ - Ak Hﬁ 9
that is,
— 1)l N
P (¢) = (—aae—? =]l 2W (). 9
DO = G [[ o8& (9)
SinceA; is an isometric isomorphism, the fami{ybg”)} forms an orthonor-
aeN"™
2
mal basis inLy(R™, e%df). We have therefore
u= Z Ug (20)
|a|=0
and .
Cu=— Z | ®™, (11)
la|=1
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so that it is clear thaf is dissipative and satisfies all assumptions of the general
theory.

To conclude we derive the form of the diffusion equation. To this end we
express operata$ in terms of eigenfunction@&”). Let us adopt the following
convention

a(i, 1) = (ag,...,a; £1,... ).

The Hermite functions satisfy the following recurrence formuladi. Leti =
1,...,n,then

= Va; 100, () + Vol (€). (12)

If somea; = 0, then naturally the second summand vanishes. By Eq. (12) we
obtain formally

Zak Z Vartags 1) + Vg + Lugg 1)) 0 | (13)
|a|=0

The hydrodynamic space is clearly spanneeblé@). Hence we denote = p@é”)
ando, = ,5(1)8”). Introducing the notation

0(i;0) = (0,...,1,...,0)

and
0(i,7;k,01)=(0,...,k,...,1,...,0),

wherel (resp.(k, [)) are in thei-th (resp.i-th andj-th) place, we get

_ (n) =
o Z 8"“(I)O(k;l)p
k=1

and further

SQ(QCQ)'QSPy

:—Z@k< Z al(I)nglll + Ok <\/_(I)((k2)+q)(n)>)p

k=1 1=1,l#k
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Projecting this ont@é") we get the diffusion operator in the form
PSQ(QCQ) ' QSPT = —A, 0.

Similarly for the corrector of the initial value we obtain

PSQ(QCQ) " w= "> dutio

k=1

and the initial layer correctar; will have the form
(Y ot N5
1 p =e <P, Zakuo(k;l)a
k=1

Whereﬁo(k;l) is the first moment of the initial value for.

To formulate the final result of this section we introduce

oft, z) == / ult, @, €)de,

R

whereu is the solution of the initial value problem for the Fokker-Planck equation

of the Brownian motion. Let.c W3(R", Ly(R", e%dg)), then

Hga) ot e (*)

uniformly for ¢ in bounded intervals o0, co|. Herep is the solution of the fol-
lowing initial value problem

G (14)

l¢|?
Lo(R*xR™,e 2" dxdf)

@ﬁ = e@i 7,

p(0) = U _Ezamk aO(k;l);
k=1

and the functiorp in the initial layer correctot; = p®, is given by
~ é _ —t/e - ) o
Plc)=c¢ Z 2y, Yo (ks1)-
k=1
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