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1 Introduction

Laws of physics and, increasingly, also those of other sciences are in many cases

expressed in terms of differential or integro–differential equations. If one models

systems evolving with time, then the variable describing time plays a special role,

as the equations are built by balancing the change of the system in time against its

‘spatial’ behaviour. In mathematics such equations are calledevolution equations.

Equations of the applied sciences are usually formulated pointwise; that is,

all the operations, such as differentiation and integration, are understood in the

classical (calculus) sense and the equation itself is supposed to be satisfied for all

values of the independent variables in the relevant domain:

∂

∂t
u(t, x) = [Au(t, ·)](x), x ∈ Ω

u(t, 0) =
◦
u, (1)

whereA is a certain expression, differential, integral, or functional, that can be

evaluated at any pointx ∈ Ω for all functions from a certain subsetS.
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When we are trying to solve (1), we change its meaning by imposing various

a priori restrictions on the solution to make it amenable to particular techniques.

Quite often (1) does not provide a complete description of the dynamics even if

it looks complete from the modelling point of view. Then the obtained solution

maybe be not what we have been looking for. This becomes particularly important

if we cannot get our hands on the actual solution but use ’soft analysis’ to find

important properties of it. These lecture notes are devoted predominantly to one

particular way of looking at the evolution of a system in which we describe time

changes as transitions from one state to another; that is, the evolution is described

by a family of operators(G(t))t≥0, parameterised by time, that map an initial

state of the system to all subsequent states in the evolution; that is solutions are

represented as

u(t) = G(t)u0, (2)

where(G(t))t≥0 is the semigroup andu0 is an initial state.

In this case we place everything in some abstract spaceX which is chosen

partially for the relevance to the problem and partially for mathematical conve-

nience. For example, if (1) describes the evolution of an ensemble of particles,

thenu is the particle density function and the natural space seems to beL1(Ω)

as in this case the norm of a nonnegativeu, that is, the integral overΩ, gives the

total number of particles in the ensemble. It is important to note that this choice is

not unique but is rather a mathematical intervention into the model, which could

change it in a quite dramatic way. For instance, in this case we could choose the

space of measures onΩ with the same interpretation of the norm, but also, if we

are interested in controlling the maximal concentration of particles, a more proper

choice would be some reasonable space with a supremum norm, such as, for ex-

ample, the space of bounded continuous functions onΩ, Cb(Ω). Once we select

our space, the right-hand side can be interpreted as an operatorA : D(A) → X

(we hope) defined on some subsetD(A) of X (not necessarily equal toX) such

thatx → [Au](x) ∈ X. With this, (1) can be written as an ordinary differential
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equation inX:

ut = Au, t > 0,

u(0) = u0 ∈ X. (3)

The domainD(A) is also not uniquely defined by the model. Clearly, we would

like to choose it in such a way that the solution originating fromD(A) could be

differentiated and belong toD(A) so that both sides of the equation make sense.

As we shall see, semigroup theory in some sense forcesD(A) upon us, although

it is not necessarily the optimal choice from a modelling point of view. Although

throughout the lectures we assume that the underlying space is given, the choice

of D(A), on which we define the realisationA of the expressionA, is a more

complicated thing and has major implications as to whether we are getting from

the model what we bargained for.

Though we also discuss a general theory, we focus on models preserving some

notion of positivity: non-negative inputs should give non-negative outputs (in a

suitable sense of the word).

1.1 What can go wrong?

Dishonesty.Models are based on certain laws coming from the applied sciences

and we expect the solutions to equations of these models to return these laws.

However, this is not always true: we will see models built on the basis of popula-

tion conservation principles, solutions of which, for certain classes of parameters,

do not preserve populations. Such models are calleddishonest. Dishonesty could

be a sign of a phase transition happening in the model, or simply indicate limits

of validity of the model.

Multiple solutions. Even if all side conditions relevant to a physical process

seems to have been built into the model, we may find that the model does not
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provide full description of the dynamics; while for some classes of parameters

the model gives uniquely determined solutions, for others there exist multiple

solutions.

We will see that methods based on positivity methods provided a comprehen-

sive explanation of these two ’pathological’ phenomena.

1.2 And if everything seems to be fine?

If we make sure that the abstract model (3) gives as a reasonable description of

the phenomena at hand, we can analyse its further properties. One of the most

frequent questions asked by practitioners is stability and long time behaviour of

solutions. In particular, in population theory an important problem is the existence

of dominating long time pattern of evolution. More precisely, we can pose the

following questions:

1. Does there exists a special solutionu∗ of (3) of the formu∗(t) = eλ∗tu∗0 for

some realλ∗ and an elementu∗0 ∈ X such that for any other solution there

is a constantC such that

u(t) = Ceλ∗tu∗0 +O(exp (λ∗ − ε)t) (4)

for someε > 0 (independent ofu)? An added bonus would be ifu∗0 could

be selected positive.

2. If this is impossible, may be there is a finite dimensional projectionP ,

which commutes with the semigroupG(t) and such that

e−λ∗tG(t)− P → 0, exponentially fast. (5)

3. More generally, we may ask whether there exists a finite dimensional projec-

tion P , which commutes with the semigroupG(t) and such thatG(t)|PX
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can be extended to a group of operators of the formetM with all eigenvalues

of M satisfying<λ = λ∗ and

(I − P )G(t) = O(e−(λ∗−ε)t), as t→∞. (6)

for someε > 0.

Those familiar with the finite dimensional population theory will recognize

that in the first case we have primitive irreducible transition matrix while in the

second and third the matrix is only irreducible with different properties of the

largest eigenvalue.

We say that the semigroup(G(t))t≥0 hasasynchronous exponential growth

(AEG) if (4) is verified (and positive AEG ifu∗ is positive). If only (5) is satis-

fied, then we say that(G(t))t≥0 hasmultiple asynchronous growth(MAEG) and,

finally, if (6) holds, then we say that(G(t))t≥0 hasextended asynchronous growth

(EAEG).

The name ’asynchronous exponential growth’ comes precisely from the pop-

ulation biology when it is observed that in many cases initially synchronized pop-

ulations lose synchrony after just a few generations. It reflects the fact that what-

ever distribution was observed at an initial times, the population evolves towards

an asymptotic distribution, where the proportion of individuals in a given stage is

constant.

Here the interplay of compactness and positivity techniques can produce in

infinite dimension results which are very close to the classical Frobenius-Perron

theory.

However, unlike in finite dimension, some models which behave perfectly well

for some classes of parameters, can degenerate into chaotic behaviour for others.

We shall demonstrate this on two examples. One is taken from classical birth-

and-death type problems, the other in a variant of the age structured population
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model.

It is worthwhile to note that phase transitions and chaos usually are associated

with nonlinear phenomena. Here we will see that they can occur in linear ones but

for this the latter must be infinite dimensional.

2 Spectral properties of operators

The considerations below will be carried in an arbitrary Banach space. However,

most applications in the present lectures are restricted to the Banach spaces which

are commonly used in the population theory due to their natural interpretation. It

is worthwhile to understand that, in applications, working in a particular Banach

space means simply that the functions we are working must satisfy a numerical re-

striction which is important in the modelling process. In population theory usually

we are interested in the evolution of an ensemble of elements the state of which is

described by a functionn(t, x) representing either a number of elements in a given

state (if the number of states is finite or countable) or the density of particles in the

statex, if x is a continuous variable. In many cases we are interested in tracking

the total number of elements of the population which, for a timet, is given by∑
x∈Ω

n(t, x),

whereΩ is the state space, ifΩ is countable and∫
x∈Ω

n(t, x)dx,

if Ω is a continuum. To make a full use of the tools of the functional analysis, we

must allow entries of arbitrary sign, so it is not surprising that using this point of

view we are working either in

l1 := {(ni)i∈N;
∞∑
i=1

|ni| <∞}
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or

L1(Ω) := {x→ n(x);

∫
Ω

|n(x)|dx <∞},

where in the first case we tookΩ = N.

Of course, as noted in Introduction, if we are more interested in maximal con-

centration of elements, we should rather work in spaces of functions with supre-

mum norm.

If uncomfortable with abstract notions, one can substitute one of the spaces

described above for a generalX to get a better understanding of the main ideas of

the lectures.

2.1 Operators

Let X, Y be real or complex Banach spaces with the norm denoted by‖ · ‖ or

‖ · ‖X .

An operatorfrom X to Y is a linear ruleA : D(A) → Y , whereD(A) is a

linear subspace ofX, called thedomainof A. We use the notation(A,D(A)) to

denote the operatorA with domainD(A).

By L(X,Y ), we denote the space of all bounded operators betweenX andY ;

that is, the operators for which

‖A‖ := sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖ < +∞. (7)

The above defines a norm which turnsL(X, Y ) into a Banach space. by introduc-

ing the normL(X,X) is abbreviated asL(X).

If Y ⊂ X is a linear space, then thepart of A in Y is defined as

AY y = Ay, D(AY ) = {x ∈ D(A) ∩ Y ; Ax ∈ Y }. (8)
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A restriction of operatorof (A,D(A)) toD ⊂ D(A) is denoted byA|D.

ForA,B ∈ L(X, Y ), we writeA ⊂ B if D(A) ⊂ D(B) andB|D(A) = A.

Two operatorsA,B ∈ L(X) are said to commute ifAB = BA. An arbitrary

operatorA is said tocommutewith B ∈ L(X) if

BA ⊂ AB. (9)

This means that for anyx ∈ D(A),Bx ∈ D(A) andBAx = ABx.

We define theimageof A by

Im A = {y ∈ Y ; y = Ax for some x ∈ D(A)}

and thekernelof A by

Ker A = {x ∈ D(A); Ax = 0}.

Furthermore, thegraphof A is defined as

G(A) = {(x, y) ∈ X × Y ; x ∈ D(A), y = Ax}. (10)

We say that the operatorA is closedif G(A) is a closed subspace ofX × Y .

Equivalently,A is closed if and only if for any sequence(xn)n∈N ⊂ D(A), if

limn→∞ xn = x in X andlimn→∞Axn = y in Y , thenx ∈ D(A) andy = Ax.

An operatorA inX is closableif the closure of its graphG(A) is itself a graph

of an operator, that is, if(0, y) ∈ G(A) impliesy = 0. Equivalently,A is closable

if and only if for any sequence(xn)n∈N ⊂ D(A), if limn→∞ xn = 0 in X and

limn→∞Axn = y in Y , theny = 0. In such a case the operator whose graph is

G(A) is called theclosureof A and denoted byA.

2.1.1 Compact operators

Let us recall that an operatorK ∈ L(X, Y ), X, Y -Banach spaces, is compact

(resp. weakly compact) if the image of the unit ball inX is a relatively compact
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(resp. weakly compact) subset ofY .

Most relevant properties of compact operators are preserved if the operator

K ∈ X is power compact; that is, ifKm is compact for somem ∈ N.

Importance of power compact operators stems, in particular, from the fact

that in certain spaces (C(Ω), L1(Ω)) the square of a weakly compact operator is

compact.

In applications it is often needed thatAK be power compact for anyA ∈
L(X). Such operators are calledstrictly power compact. Since the the space of

weakly compact (and also compact, for that matter) operators is a two sided ideal

in L(X), weakly compact operators inC(Ω), L1(Ω) are strictly power compact.

Example 1 Consider the integral operator given formally by

Tf(x) =

∫
Ω

k(x, y)f(y)dy,

whereΩ ⊆ Rn. The operatorT is compact fromLp(Ω) toLp(Ω) if k ∈ Lp,q(Ω×
Ω), where1/p+1/q = 1, providedp > 1. Forp = 1, the assumption correspond-

ing assumption

k ∈ L1,∞(Ω× Ω) (11)

is not sufficient for compactness. For suchK to be compact, we require e.g.

k ∈ C(Ω, L∞(Ω)) (see [36, p.53]). However, under assumption (11), the operator

K is weakly compact and thus strictly power compact ([24]).

2.2 Spectral properties of a single operator

LetA be any operator inX. Theresolvent setof A is defined as

ρ(A) = {λ ∈ C; λI − A : D(A) → X is invertible}. (12)
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We call(λI − A)−1 the resolvent ofA and denote it by

R(λ,A) = (λI − A)−1, λ ∈ ρ(A).

The complement ofρ(A) inC is called thespectrumofA and denoted byσ(A). In

general, it is possible that eitherρ(A) or σ(A) is empty. The spectrum is usually

subdivided into several subsets. We follow the approach of [38, 26] which, though

being not the most common, is very suitable for the description of asymptotics of

semigroups. The most important is

• Point spectrumσp(A) is the set ofλ ∈ σ(A) for which the operatorλI −A

is not one-to-one. In other words,σp(A) is the set of all eigenvalues ofA.

A generalization of the point spectrum which will play an important role later is

the approximate spectrum:

• Approximate spectrumσa(A) is the set ofλ ∈ σ(A) for which either the

operatorλI − A is not one-to-one or the rangeIm A is not closed.

The nameapproximate spectrumcomes from the following property which is of-

ten used to as a definition.

Lemma 1 If (A,D(A)) is a closed operator inX, thenλ ∈ σa(A) if and only

if there is a sequence(xn)n∈N ⊂ D(A) such that‖xn‖ = 1, n ∈ N, and

limn→∞ ‖Axn − λxn‖ = 0.

The last part of the spectrum is

• Residual spectrumσr(A) is the set ofλ ∈ σ(A) for which Im (λI − A) is

not dense inX.
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Clearly, theσp, σa andσr are not disjoint (in particular,σp ⊂ σa) but we clearly

have

σ(A) = σa(A) ∪ σr(A).

Moreover,σr(A) = σp(A
∗) (A∗ denotes the adjoint ofA) and the topological

boundary ofσ(A) satisfies

∂σ(A) ⊂ σa(A) (13)

Remark 1 Typically,σ(A) is divided intoσp(A) (defined as above), the continu-

ous spectrumσc(A) which is the set ofλ ∈ σ(A) for which the operatorλI − A

is one-to-one and its range is dense inX but not equal toX and the residual spec-

trum is defined as the set ofλ ∈ σ(A) for which the operatorλI−A is one-to-one

and its range is not dense inX. Clearly,σc(A) ⊂ σa(A) but we shall not explore

further relations between these two definitions. However, the continuous spectrum

will come in handy in e.g. Theorem 45.

The resolvent of any operatorA satisfies theresolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A), (14)

from which it follows, in particular, thatR(λ,A) andR(µ,A) commute. It follows

thatρ(A) is an open set andR(λ,A) is an analytic function ofλ ∈ ρ(A) which

can be written as the power series

R(λ,A) =
∞∑

n=0

(µ− λ)nR(µ,A)n+1 (15)

for |µ− λ| < ‖R(µ,A)‖−1. For any bounded operator the spectrum is a compact

subset ofC so thatρ(A) 6= ∅. If A is bounded, then the limit

r(A) = lim
n→∞

n
√
‖An‖ (16)

exists and is calledthe spectral radius. Clearly,r(A) ≤ ‖A‖.
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Theorem 2 The spectral radius ofA has the following properties.

(i) We have

R(λ,A) =
∞∑

n=0

λ−(n+1)An, (17)

where the series converges in the operator norm for|λ| > r(A).

(ii) For |λ| < r(A) the series in (17) diverges (in the operator norm).

(iii)

r(A) = sup
λ∈σ(A)

|λ|. (18)

To show that a pointλ ∈ C belongs to the spectrum we often use the following

result.

Theorem 3 LetA be a closed operator. Ifλ ∈ ρ(A), then

dist(λ, σ(A)) =
1

r(R(λ,A))
≥ 1

‖R(λ,A)‖
. (19)

In particular, ifλn → λ, λn ∈ ρ(A), thenλ ∈ σ(A) if and only if{‖R(λn, A)‖}n∈N

is unbounded.

The concept of the spectral radius allows to introduce another frequently used

part of the spectrum. Theperipheral spectrumof a bounded operatorA is the set

σper,r(A) = {λ ∈ σ(A); |λ| = r(A)}. (20)

Clearly,σper,r(A)(A) is compact and, by (18), non-empty.

For an unbounded operatorA the role of the spectral radius often is played by

thespectral bounds(A) defined as

s(A) = sup{<λ; λ ∈ σ(A)}, (21)
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and the peripheral spectrum ofA in this case is correspondingly defined as

σper,s(A) = {λ ∈ σ(A); Reλ = s(A)}. (22)

An important role in analysis is played by the Spectral Mapping Theorem.

SupposeA ∈ L(X) andf(z) =
∑∞

n=0 anz
n is an analytic function in a disc

containingσ(A). Then we can define a functionf(A) by

f(A) =
∞∑
i=0

anA
n

where the series is convergent asσ(A) is contained in a circle with radiusr(A).

An alternative definition can be obtained by the Dunford integral

f(A) = (2πi)−1

∫
γ

f(λ)R(λ,A)dλ,

whereγ is a closed contour surroundingσ(A).

Spectra ofA andf(A) are related by the Spectral Mapping Formula

σ(f(A)) = f(σ(A)). (23)

2.2.1 Decomposition of the spectrum

LetA be a closed operator. An important case occurs ifσ(A) can be decomposed

into two disjoint parts, one of which is compact and the other closed. We shall

focus on the case when the compact part consists of an isolated pointλ0 of σ(A).

This means that the resolvent can be expanded into a Laurent series

R(λ,A) =
∞∑

n=−∞

(λ− λ0)
nBn (24)
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for 0 < |λ − λ0| < δ for sufficiently smallδ. The coefficientsBn are bounded

operators given by the formula

Bn =
1

2πi

∫
γ

(λ− λ0)
−n−1R(λ,A)dλ, n ∈ Z (25)

whereγ is a positively oriented simple curve surroundingλ0 in ρ(A). Application

of the Cauchy integral formula gives

B−nB−k = B−n−k+1, n, k ∈ N (26)

The coefficientP = B−1 is called theresidueof A. If there existsk such that

B−k 6= 0 whileB−n, n > k, thenλ0 is called thepoleof R(λ,A) of orderk. We

have

Bk = lim
λ→λ0

(λ− λ0)
kR(λ,A).

The following properties can be found in e.g. [32, 47].

Theorem 4 1. The operatorB−1 is a projection onX with Im B−1 and

Im (I −B−1) closed.

2. The restriction ofA to Im B−1 is bounded and has spectrum{λ0}.

3. If dim Im B−1 <∞, thenλ0 is a pole ofR(λ,A).

4. If λ0 is a pole ofR(λ,A) of orderk, then it is an eigenvalue ofA and, for

j ≥ 0,

Im B−1 = Ker (λ0I − A)k = Ker (λ0I − A)k+j,

Im (I −B−1) = Im (λ0I − A)k = Im (λ0I − A)k+j, (27)

and

X = Ker (λ0I − A)k
⊕

Im (λ0I − A)k.
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Let us prove the first part of (4), which frequently occurs in applications. Multi-

plying (24) by(λI − A) we obtain

I = ((λ− λ0)I + (λ0I − A))
∞∑

n=−∞

(λ− λ0)
nBn

=
∞∑

n=−∞

(λ− λ0)
n+1Bn +

∞∑
n=−∞

(λ− λ0)
n(λ0I − A)Bn

so that

(λ0I − A)B−n = −B−(n+1).

Sincen is the order of the pole,B−(n+1) = 0. On the other hand, sinceB−n 6= 0,

there isf such thatx = B−nf 6= 0 is an eigenvector corresponding toλ0. �

We define

Ker∞(λ0I − A) =
⋃
k≥0

Ker (λ0I − A)k;

Ker∞ is called the generalized eigenspace ofA corresponding to the eigenvalue

λ0. dim Im P is called thealgebraic multiplicityof λ0, denotedma, while

mg = dim Ker (λ0I − A) is called thegeometric multiplicity. If ma = 1, then

λ0 is called analgebraically simplepole. If k is the order of the pole (k = ∞ if

λ0 is an essential singularity), then

mg + k − 1 ≤ ma ≤ mgk

(0 · ∞ := ∞). Thus,ma <∞ if and only if λ0 is a pole withmg <∞.

If A is closed withρ(A) 6= ∅, thenλ0 is an isolated point ofσ(A) if and only if

(λ− λ0)
−1 is isolated inσ(R(λ,A)) and the residues and orders of the respective

poles coincide.

In particular, ifA has compact resolvent, thenσ(A) consists only of poles of

finite algebraic multiplicity.
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2.2.2 Turning approximate eigenvalues into eigenvalues

There is a very useful construction extending a given Banach space, called an

ultrapowerof X ([1]) or F -product([38]). Here we shall discuss it in a restricted

setting. Letl∞(X) (resp.c0(X)) be the vector space of bounded (resp. converging

to 0) sequences(xn)n∈N ⊂ X. We denote

X̂ = l∞(X)/c0(X)

with the classes of equivalence denoted by

x̂ = (xn)n∈N + c0(X).

The spaceX̂ becomes a Banach space under the norm

‖x̂‖ = lim sup
n→∞

‖xn‖.

There is a natural embeddingX 3 x→ (x, x, . . .) + c0(X) ∈ X̂ so thatX can be

identified with a closed subspace ofX̂.

Bounded operators onX give rise to bounded operators on̂X: for A ∈ L(X)

andx̂ = (xn)n∈N + c0(X) we have

Âx̂ = ̂(Ax1, Ax2, . . .)

and it can be proved that‖A‖ = ‖Â‖.

If (xn)n∈N is approximate eigenvector ofA with approximate eigenvalueλ,

then‖Axn − λxn‖ → 0 asn → ∞. But this is the same as saying thatx̂ =

(x1, x2, . . .) + c0(X) is an eigenvector of̂A with the same eigenvalue. Actually,

even more is true.

Theorem 5 [21, p.290] LetA ∈ L(X). Then
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1. σ(A) = σ(Â);

2. σa(A) = σa(Â) = σp(Â);

3. R̂(λ,A) = R(λ, Â) for λ ∈ ρ(A) = ρ(Â);

4. λ0 ∈ σ(A) is a pole ofR(λ,A) of orderp if and only ifλ0 ∈ σ(Â) is a pole

ofR(λ, Â) of orderp.

Unfortunately, for unbounded operators and semigroups the situation becomes

more complicated and we shall return to this topic later.

2.2.3 Spectrum of compact and power compact operators

The main results, summarizing the spectral properties of compact and power com-

pact operators, are given in the following theorem.

Theorem 6 If K is compact (or power compact), then

(i) The spectrum ofK is at most countable and contains{0} if dimX = ∞;

(ii) If σ(K) is infinite and{λ1, λ2, · · ·} is any enumeration of it, thenλn → 0 as

n→∞.

(iii) Every non-zero point of spectrum is a pole of the resolvent and thus is an

eigenvalue.

Proof. For compact operators this result is known as the Fisher-Riesz theory.

Extension to power compact operators is possible due to the Spectral Mapping

Theorem which givesσ(Kn) = {λn; λ ∈ σ(K)} and proves the assertions about
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the spectrum. To prove (iii) we consider the restriction ofK to the projection

Xλ = B−1X associated with0 6= λ ∈ σ(K). Xλ is invariant with respect to

K and thusK|Xλ
is power compact withσ(K|Xλ

) = {λ} by Theorem 4(2).

If dimXλ = ∞, then this contradicts point (i) of the present theorem. Thus

dimXλ <∞ and the result follows by Theorem 4 (4). �

2.2.4 Essential spectrum

As we have seen above, it is important to separate ’good’ points of spectrum from

’bad’ ones. The concept ofessential spectrumhave been introduced with this idea

in mind.

Definition 1 The essential spectrum ofA, denoted byσe(A) is the set ofλ ∈ σ(A)

which satisfy at least one of the following conditions

(i) Im (λI − A) is not closed;

(ii) dim K∞(λI − A) = ∞;

(iii) λ is an accumulation point ofσ(A).

Essential spectrum is closely related to the concept of Fredholm points ofA. We

say thatλ is a Fredholm point ofA, and writeλ ∈ ρΦ(A), if Ker (λI − A) is

finite dimensional andIm (λI−A) is closed of finite codimension. The Fredholm

spectrum ofA, denotedσΦ(A), is the set ofλ ∈ C which are not Fredholm points

of A. Clearly,

σφ(A) ⊂ σe(A),

but, in general, these sets are different (e.g., there may exist non-isolated Fredholm

points ofA.
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Remark 2 Several authors (see e.g. [38, 26]) define the essential spectrum as

the Fredholm spectrum. It has the additional advantage that it coincides with the

normal spectrum of the canonical image ofA in the quotient spaceL(X)/K(X),

whereK(X) is the ideal of compact operators inX. This allows to define the

Fredholm norm ofA as

‖A‖Φ = dist(A,K(X)) = inf{‖A−K‖, K ∈ K(X)}

As we shall see later, for the purpose of these lectures, the difference between

both definitions are not significant.

We mention that there are also other, non-equivalent, definitions of essential

spectrum.

We have the following result [20, 21].

Theorem 7 Supposeλ0 ∈ σ(A) anddim Ker (λ0I − A) < +∞. Thenλ0 ∈
σ(A) \ σe(A) if and only ifR(λ,A) is analytic in a neighbourhood ofλ0 and has

a pole atλ0.

Without assumption thatdim Ker (λ0I − A) < +∞ we can prove only that if

λ0 ∈ σ(A) \ σe(A), thenλ0 is a pole ofR(λ,A).

In particular, ifλ0 is a non-essential point ofσ(A), thenIm (λ0I − A) is of

finite codimension (see (27)) and thusλ0 ∈ ρΦ(A).

We note some properties of the spectrum, [5]:

(a) intσ ⊂ σe;

(b) ∂σe ⊂ σΦ.
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We can use characterization (18) of the spectral radius of a bounded operator to

define analogous concepts related to the essential and Fredholm spectra ofA:

re(A) = sup
λ∈σe(A)

|λ|,

rΦ(A) = sup
λ∈σΦ(A)

|λ|. (28)

Clearly, we haverΦ(A) ≤ re(A). On the other hand, sinceσe(A) is a compact

set (forA bounded), there isλ ∈ σe(A) with |λ| = re(A). Suchλ is in ∂σe(A),

hence, by (b) above, it is inσΦ(A). ThereforerΦ(A) ≥ re(A) and

rΦ(A) = re(A). (29)

Remark 3 Since‖ · ‖Φ is a norm andσΦ(A) is coincides with the spectrum of the

canonical imagẽA of A in L(X)/K(X), we have also

rΦ(A) = r(Ã) = lim
n→∞

n

√
‖Ãn‖Φ.

Using the above discussion, the essential radius can be characterized as follows

re(A) is the smallestr ∈ R+ such that everyλ ∈ σ(A) satisfying

|λ| > r is an isolated pole of finite algebraic multiplicity. For any

r > re(A), the set{λ ∈ σ(A); |λ| ≥ r} is finite.

The last statement follows from the fact that the spectrum of a bounded operator

is compact and any accumulation point ofσ(A) belongs toσe(A).

3 Banach Lattices and Positive Operators

In many processes in the natural sciences only nonnegative solutions are mean-

ingful. This is the case when the solution is a probability, a density function, the
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absolute temperature, and so on. Thus, mathematical models of such processes

should have the property that nonnegative data yield nonnegative solutions. If

we work in concrete spaces of functions, then the notion of positivity is natural:

either pointwise for continuous functions or almost everywhere in the spaces of

measurable functions. However, in a general setting we have to find an abstract

notion generalizing the pointwise concepts of positivity.

3.1 Defining Order

In a given vector spaceX an order can be introduced either geometrically, by

defining the so-calledpositive cone(in other words, what it means to be apos-

itive elementof X), or through the axiomatic definition. We follow the second

approach.

Definition 2 LetX be an arbitrary set. A partial order (or simply, an order)

onX is a binary relation, denoted here by ‘≥’, which is reflexive, transitive, and

antisymmetric, that is,

(1) x ≥ x for eachx ∈ X;

(2) x ≥ y andy ≥ x implyx = y for anyx, y ∈ X;

(3) x ≥ y andy ≥ z implyx ≥ z for anyx, y, z ∈ X.

We need a number of related conventions and definitions. The notationx ≤ y

meansy ≥ x. x > y meansx ≥ y andx 6= y. An upper boundfor a setS ⊂ X

is an elementx ∈ X satisfyingx ≥ y for all y ∈ S. An elementx ∈ S is said

to bemaximalif there is noS 3 y 6= x for which y ≥ x. A lower boundfor S

and aminimal elementare defined analogously. Agreatest element(respectively,
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a least element) of S is anx ∈ S satisfyingx ≥ y (respectively,x ≤ y) for all

y ∈ S.

We note here that in an ordered space in general there are elements that cannot

be compared and hence the distinction between maximal and greatest elements is

important. A maximal element is the ‘largest’ amongst all comparable elements

in S, whereas a greatest element is the ‘largest’ amongst all elements inS. If a

greatest (or least) element exists, it must be unique by axiom (2).

Thesupremumof a set is its least upper bound and theinfimumis the greatest

lower bound. The supremum and infimum of a set need not exist. It is worthwhile

to emphasize that an elements, which is an upper bound ofS, is a supremum of

the setS if, for any upper boundy of S, we haves ≤ y.

Let x, y ∈ X andx ≤ y. Theorder interval[x, y] is defined by

[x, y] := {z ∈ X; x ≤ z ≤ y}.

For a two-point set{x, y} we writex ∧ y or inf{x, y} to denote its infimum and

x∨ y or sup{x, y} to denote supremum. We say thatX is a lattice if every pair of

elements (and so every finite collection of them) has both supremum and infimum.

From now on, unless stated otherwise, any vector spaceX is real.

Definition 3 An ordered vector space is a vector spaceX equipped with partial

order which is compatible with its vector structure in the sense that

(4) x ≥ y impliesx+ z ≥ y + z for all x, y, z ∈ X;

(5) x ≥ y impliesαx ≥ αy for anyx, y ∈ X andα ≥ 0.

The setX+ = {x ∈ X; x ≥ 0} is referred to as the positive cone ofX.

If the ordered vector spaceX is also a lattice, then it is called a vector lattice

or a Riesz space.
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Typical examples of Riesz spaces are provided byfunction spaces. If X is a

vector space of real-valued functions on a setΩ, then we can introduce a pointwise

order inX by saying thatf ≤ g in X if f(x) ≤ g(x) for anyx ∈ S. Equipped

with such an order,X becomes an ordered vector space. Let us define onX ×X

the operationsf ∨ g andf ∧ g by taking pointwise maxima and minima; that is,

for anyf, g ∈ X,

(f ∨ g)(x) := max{f(x), g(x)},
(f ∧ g)(x) := min{f(x), g(x)}.

We say thatX is a function spaceif f ∨ g, f ∧ g ∈ X, wheneverf, g ∈ X.

Clearly, a function space with pointwise ordering is a Riesz space. Examples

of function spaces are offered by the spaces of all real functionsRΩ or all real

bounded functionsM(Ω) on a setΩ, and by, defined earlier, spacesC(Ω), C(Ω),

or lp, 1 ≤ p ≤ ∞.

If Ω is a measure space, then all above considerations are valid when the point-

wise order is replaced byf ≤ g if f(x) ≤ g(x) almost everywhere. With this

understanding,L0(Ω) andLp(Ω) spaces with1 ≤ p ≤ ∞ become function spaces

and are thus Riesz spaces.

We only consider Archimedean spaces; that is, spaces havig the property that

if infn∈N{n−1x} = 0 holds for anyx ∈ X+.

The operations of taking supremum or infimum in a Riesz space have several

useful properties which make them similar to the numerical case. In particular,

we can define the positive and negative part ofx ∈ X, and its absolute value,

respectively, by

x+ = sup{x, 0}, x− = sup{−x, 0}, |x| = sup{x,−x}.

The functions(x, y) → sup{x, y}, (x, y) → inf{x, y}, x → x± andx → |x| are

collectively referred to as thelattice operationsof a Riesz space. They are related
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by

x = x+ − x−, |x| = x+ + x−. (30)

The absolute value has a number of useful properties that are reminiscent of the

properties of the scalar absolute value; that is, for example,|x| = 0 if and only if

x = 0, |αx| = |α||x| for anyx ∈ X and any scalarα.

For a subsetS of a Riesz space we write

sup{x, S} = x ∨ S := {sup{x, s}; s ∈ S},
inf{x, S} = x ∧ S := {inf{x, s}; s ∈ S}.

The following infinite distributive laws are used later.

Proposition 1 [3, Theorem 1.5] and [34, Theorem 2.13.1] LetS be a nonempty

subset of a Riesz spaceX. If supS exists, thensup{inf{x, S}} andsup{sup{x, S}}
exist for eachx ∈ X and

sup{inf{x, S}} = inf{x, supS},
sup{sup{x, S}} = sup{x, supS}. (31)

Similarly, if inf S exists, theninf{sup{x, S}}, inf{inf{x, S}} exist for eachx ∈
X and

inf{sup{x, S}} = sup{x, inf S},
inf{inf{x, S}} = inf{x, inf S}. (32)

The existence of suprema or infima of finite sets, ensured by the definition of a

Riesz space, does not extend to infinite sets. This warrants introducing a more

restrictive class of spaces.
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Definition 4 We say that a Riesz spaceX is Dedekind (or order) complete if every

nonempty and bounded from above subset ofX has a least upper bound inX. X

is said to be σ-Dedekind or (σ-order) complete, if every bounded from above

nonempty countable subset ofX has a least upper boundX.

Example 8 The spaceC([0, 1]) is notσ-order complete (and thus also not order

complete). To see this, consider the sequence of functions given by

fn(x) =


1 for 0 ≤ x ≤ 1

2
− 1

n
,

n
(

1
2
− x
)

for 1
2
− 1

n
< x ≤ 1

2
,

0 for 1
2
< x < 1.

This is clearly an increasing sequence bounded from above byg(x) ≡ 1. How-

ever, it converges pointwise to a discontinuous functionf(x) = 1 for x ∈ [0, 1/2)

andf(x) = 0 for x ∈ [1/2, 0]. In general, spacesC(Ω) are notσ-order complete

unlessΩ consists of isolated points. On the other hand, the spaceslp, 1 ≤ p ≤ ∞,

are clearly order complete, as taking the coordinatewise suprema of sequences

bounded from above by anlp sequence produces a sequence which is inlp.

The spacesLp(Ω), p ∈ {0} ∪ [1,∞] are also order complete but the proof is

much more delicate, see [9, Example 2.52].

3.2 Banach Lattices

As the next step, we investigate the relation between the lattice structure and the

norm whenX is both a normed and an ordered vector space.

Definition 5 A norm on a vector latticeX is called a lattice norm if

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖. (33)

A Riesz spaceX complete under the lattice norm is called a Banach lattice.
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Property (33) gives the important identity:

‖x‖ = ‖|x|‖, x ∈ X. (34)

If X is a normed lattice, then all lattice operations are uniformly continuous

in the norm ofX with respect to all variables involved.

Positive operators will be discussed in more detail below. However, we need

some terminology related to operators at this instance. An operatorA defined

onX is said to be positive ifAx ≥ 0 for x ≥ 0. A positive operatorA is said

to be alattice homomorphismif A(x ∨ y) = Ax ∨ Ay. It can be proved that

this is equivalent toA preserving all other lattice operations (e.g.|Ax| = |x|,
(Ax)+ = Ax+, etc). If A is a one-to-one lattice homomorphism, it is called a

lattice isomorphismand if, additionally,A is an isometry, then it is called alattice

isometry.

Bounded positive functionals form a convex cone inX∗ and thus define a

natural ordering ofX∗. It can be proved, [3, Theorem 12.1], that the normed

dual of a normed Riesz space is a Banach lattice under this order. In addition,

the evaluation mapX → X∗∗ is a lattice isometry so thatX becomes a Riesz

subspace ofX∗∗.

3.2.1 Sublattices, ideals, bands, etc

A vector subspaceX0 of a vector latticeX, which is ordered by the order inherited

from X, may fail to be a vector sublattice ofX in the sense thatX0 may be not

closed under lattice operations. For instance, the subspace

X0 := {f ∈ L1(R);

∞∫
−∞

f(t)dt = 0}
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does not contain any nontrivial nonnegative function, and thus it is not closed

under the operations of takingf± or |f |.

Accordingly, we callX0 avector sublatticeor aRiesz subspaceif X0 is closed

under lattice operations.

A subsetS of a vector lattice is called solid if for anyx, y ∈ X from y ∈ S

and |x| ≤ |y| it follows that x ∈ S. A solid linear subspace is calledideal;

ideals are automatically Riesz subspaces. Aband in X is an ideal that contains

suprema of all its subsets. Any subsetS ⊂ X uniquely determines the smallest

(in the inclusion sense) Riesz subspace (respectively, ideal, band) inX containing

S, called theRiesz subspace (respectively, ideal, band) generated byS.

Example 9 Closed ideals can be used to construct new useful Banach lattices by

taking quotients. LetX be a Banach lattice andE a closed ideal inX. Then the

quotient spaceX/E is a Banach space. We can define an order inX/E through

the following relation. ForX/E 3 x̃, ỹ we say that̃x ≤ ỹ if there arex1 ∈ x̃ and

y1 ∈ ỹ such thatx1 ≤ y1 in X and one can prove thatX/E with this order and

the canonical quotient norm is a Banach lattice.

Consider, in particular, theF -product discussed in Subsection 2.2.2. IfX is a

Banach lattice, then the absolute value onl∞(X) is given by

|(xn)n∈N| = (|xn|)n∈N.

Sincec0(X) is a closed ideal inl∞(X), thenX̂ is a lattice with the canonical

injection becoming a lattice homomorphism.

Example 10 Closed ideals inX = Lp(Ω), which are not equal toX, are precisely

the sets of the form

I = {f ∈ X; ∃Ω′⊂Ω,µ(Ω′) f |Ω′ = 0 a.e.}.
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I clearly is a closed ideal.On the other hand, letf(x) > 0 a.e. onΩ andg ∈ X+.

Consider setsΩn = {x ∈ Ω; f(x) ≥ 1/n} and definegn(x) = 0 on Ωn, gn =

min g, n otherwise. We have0 ≤ gn ≤ n2f , hencegn ∈ X and, clearlygn → g

in Lp(Ω) sinceµ(Ωn) → 0 asn→∞.

In the theory developed later a particularly important part is played by ideals gen-

erated by a single point, say{x}. Such an ideal, called theprincipal idealgener-

ated byx, is given by

Ex = {y ∈ X; there exists λ ≥ 0 such that |y| ≤ λ|x|}.

If for some vectore ∈ X we haveEe = X, thene is called anorder unit.

A principal bandgenerated byx ∈ X is given by

Bx = {y ∈ X; sup
n∈N

{|y| ∧ n|x|} = |y|}.

An elemente ∈ X is said to be aweak unitif Be = X. It follows that, in a vector

lattice,e > 0 is a weak unit if and only if, for anyx ∈ X, |x| ∧ e = 0 implies

x = 0. Every order unit is a weak unit. IfX = C(Ω), whereΩ is compact, then

any strictly positive function is an order unit. On the other hand,Lp andl1 spaces,

1 ≤ p < +∞, will not typically have order units (Lp include functions that could

be unbounded, forlp one can always find a sequence converging to0 at a slower

rate than a given one). However, any strictly positive a.e.Lp function is a weak

order unit.

An intermediate notion between order unit and weak order unit is played by

quasi-interior points. We say that0 6= u ∈ X+ is a quasi-interior point ofX if

Eu = X. We have

Lemma 2 [1, Lemma 4.15] For0 6= u ∈ X+ the following are equivalent.

(a) u is a quasi-interior point ofX;
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(b) For eachx ∈ X+ we havelimn→∞ ‖x ∧ nu− x‖ = 0;

(b) If 0 < x∗ ∈ X∗
+, then<x∗, u> > 0.

The name ’quasi-interior point’ comes from the fact that a unit is an interior point

of a positive cone. Thus, we have

order unit ⇒ quasi− interior point ⇒ weak order unit

and, in general, the implications cannot be reversed. The importance of quasi

interior points will become more clear when we will discussAM -spaces.

3.2.2 AM - andAL-spaces

Two important classes of Banach lattices that play a significant role later are pro-

vided by theAL- andAM - spaces.

Definition 6 We say that a Banach latticeX is

(i) an AL-space if‖x+ y‖ = ‖x‖+ ‖y‖ for all x, y ∈ X+,

(ii) an AM-space if‖x ∨ y‖ = max{‖x‖, ‖y‖} for all x, y ∈ X+.

Example 11 Standard examples ofAM -spaces are offered by the spacesC(Ω),

whereΩ is either a bounded subset ofRn, or in general, a compact topological

space. Also the spaceL∞(Ω) is anAM -space. On the other hand, most known

examples ofAL-spaces are the spacesL1(Ω). We observe later that these exam-

ples exhaust all (up to a lattice isometry) cases ofAM - andAL-spaces. However,

particular representations of these spaces can be very different.
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It can be proved, [3, Theorem 12.22] and [1, Theorem 3.3], that a Banach lattice

X is anAL-space (respectively,AM -space) if and only if its dualX∗ is anAM -

space (respectively,AL-space). Moreover, ifX is anAL-space, thenX∗ is a

Dedekind completeAM -space with unite∗ defined by

X∗ 3 e∗(x) = ‖x+‖ − ‖x−‖

for x ∈ X (thuse∗ coincides with the norm ofx on the positive cone). Moreover,

if X is anAM -space with unite, thenX∗∗ is also anAM -space with unite.

Any AM -spaceX with unit e can be equivalently normed by

‖x‖∞ = inf{λ > 0; |x| ≤ λe}

(see, e.g., [3, p. 188]). In this norm the unit ball ofX coincides with the order

interval [−e, e]. On the other hand, any Banach lattice containsAM -spaces with

unit. Precisely speaking, [3, Theorem 12.20], the principal ideal generated by any

elementu ∈ X with the norm

‖x‖∞ = inf{λ > 0; |x| ≤ λ|u|}, (35)

becomes anAM -space with unit|u|, whose closed unit ball coincides with the

order interval[−|u|, |u|].

The following results give the full characterisation ofAL- andAM - spaces.

Theorem 12 [3, Theorem 12.26] A Banach lattice is anAL-space if and only if

it is lattice isometric to anL1(Ω) space.

Theorem 13 [3, Theorem 12.28] A Banach latticeX is anAM -space with unit

if and only if it is lattice isometric to someC(Ω) for a unique (up to a homeomor-

phism) compact Hausdorff spaceΩ. In particular,X is anAM -space if and only

if it is lattice isometric to a closed vector sublattice of aC(Ω) space.
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We provide a brief information about the main parts of the proof of the latter

theorem.

Proof. The compact spaceΩ turns out to be

Ω = {x∗ ∈ B∗
1,+; x∗ extr. p. of B∗

1 with ‖x∗‖ = ‖x∗(e)‖ = 1}
= {x∗ ∈ B∗

1,+; x∗ lat. hom. with ‖x∗‖ = ‖x∗(e)‖ = 1}.

Here,B∗
1 is the unit ball in the dual space and extreme points of a set are under-

stood as points which do not belong to any proper segment with endpoints in this

set. Establishing this equality is a difficult part of the proof. It follows thatΩ is

non-empty (by Krein-Milman theorem) and weakly∗ compact. Thus,Ω equipped

with the weak∗ topology will be our compact topological space. Forx ∈ X we

define the mapping

(Tx)(x∗) =<x∗, x>, x∗ ∈ Ω.

It can be proved thatT is a norm preserving lattice isomorphism fromX into

C(Ω). Since(Te)(x∗) = x∗(e) = 1 for all x∗ ∈ Ω, T (E) is closed and separates

points ofΩ, it follows from the Stone-Weierstrass theorem thatT (E) = C(Ω). �

Using the last theorem, we see that each Banach lattice ’locally’ is a lattice

isomorphic toC(Ω). More precisely, given0 < u ∈ X we take the principal ideal

Eu which can be converted into anAM -space normed by (35). This norm is not

equivalent to the norm inX. However, if we have a bounded operator defined

onX, then the transferred operator onC(Ω) will be again a positive everywhere

defined operator and thus bounded (by Theorem 15). Conversely, operators spe-

cific toC(Ω), such as multiplication or composition operators, can be transferred

to bounded operators onXu. If u is a quasi-internal point and the given operator

happen to be bounded in the original norm, then it can be extended by density

to the whole Banach lattice. We shall use this construction later to define the

modulus of an element of a complex Banach lattice and the signum operator.
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3.3 Positive Operators

Definition 7 A linear operatorA from a Banach latticeX into a Banach lattice

Y is called positive, denoted byA ≥ 0, if Ax ≥ 0 for anyx ≥ 0.

An operatorA is positive if and only if|Ax| ≤ A|x|. This follows easily from

−|x| ≤ x ≤ |x| so, ifA is positive, then−A|x| ≤ Ax ≤ A|x|. Conversely, taking

x ≥ 0, we obtain0 ≤ |Ax| ≤ A|x| = Ax.

Positive operators are fully determined by their behaviour on the positive cone.

Precisely speaking, we have the following theorem (eg. [9, Theorem 2.64]).

Theorem 14 If A : X+ → Y+ is additive, thenA extends uniquely to a positive

linear operator fromX to Y . Keeping the notationA for the extension, we have,

for eachx ∈ X,

Ax = Ax+ − Ax−. (36)

Another frequently used property of positive operators is given in the following

theorem.

Theorem 15 If A is an everywhere defined positive operator from a Banach lat-

tice to a normed Riesz space, thenA is bounded.

Proof. If A were not bounded, then we would have a sequence(xn)n∈N sat-

isfying ‖xn‖ = 1 and ‖Axn‖ ≥ n3, n ∈ N. BecauseX is a Banach space,

x :=
∑∞

n=1n
−2|xn| ∈ X. Because0 ≤ |xn|/n2 ≤ x, we have∞ > ‖Ax‖ ≥

‖A(|xn|/n2)‖ ≥ ‖A(xn/n
2)‖ ≥ n for all n, which is a contradiction. �

36



A striking consequence of this fact is that all norms, under whichX is a Ba-

nach lattice, are equivalent as the identity map must be continuously invertible,

[3, Corollary 12.4].

Example 16 The assumption thatX in Theorem 15 is a complete space is essen-

tial. Indeed, letX be a space of all real sequences which have only a finite number

of nonzero terms. It is a normed Riesz space under the norm‖x‖ = supn{|xn|},
wherex = (xn)n∈N. Consider the functional

f(x) =
∞∑

n=1

xn.

It is a positive everywhere defined linear functional. However, taking the sequence

of elementsxn = (1, 1, . . . , 1, 0, 0, . . .), where0 appears starting from then+ 1st

place, we see that‖xn‖ = 1 andf(xn) = n for eachn ∈ N so thatf is not

bounded.

The set of all positive operators from a Banach latticeX to another Banach

latticeY is a convex cone in the spaceL(X, Y ), thus it generates a natural order:

A ≤ B wheneverAx ≤ Bx for all x ∈ X+. This cone, however, in general does

not generateL(X,Y ) (e.g., [3, Example 1.11]). The norm of a positive operator

can be evaluated by

‖A‖ = sup
x≥0, ‖x‖≤1

‖Ax‖.

As a consequence, we note that if0 ≤ A ≤ B, then‖A‖ ≤ ‖B‖. Moreover,

it is worthwhile to emphasize that if there existsK such that‖Ax‖ ≤ K‖x‖ for

x ≥ 0, then this inequality holds for anyx ∈ X.

Irreducible operators. An important class of positive operators areirreducible

operators. We say that an operatorA on a Banach latticeX is irreducible if{0}
andX are the only invariant ideals underA. We say thatA is strongly irreducible
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if Au is quasi-interior point for anyu > 0. Strongly irreducible operators are

irreducible. Indeed, any closed idealE 6= {0} contains a positive pointu so that

Au ∈ AE ⊂ E providedE is invariant. SinceAu is quasi-interior, this implies

E = X We shall return to this concept in Subsection 6.2.1.

Example 17 An important role in the following considerations is played by the

multiplication by thesignum operator. In function spaces the definition is obvi-

ous: givenu 6= 0 andf ∈ C(Ω), we defineSuf = u|u|−1f . Clearly, in this

settingSu is a linear isometry satisfying|Suf | = |f |; its inverse isSū, whereū is

the complex conjugate ofu.

In general situation, we restrict our attention tou such that|u| is quasi-interior

point of X. In this case we define this operator onE|u| by passing to the rep-

resentationC(Ω) and transferring back the signum operator defined above toX.

We note that in this settingSh is still invertible and has the same properties as

in C(Ω). By |Suf | = |f | we can extendSu by density toX = E|u| preserving

invertibility.

It is possible to extend this definition to the case when|u| is no longer a quasi-

interior point but it will not be needed in what follows (see e.g. [38, p. 245].

3.4 Relation Between Order and Norm

Existence of an order in some setX allows us to introduce in a natural way the no-

tion of convergence. However, in general, sequences are not sufficient to properly

describe all related phenomena and thus we have to resort to nets.

We say that an ordered set∆ is directedif any pair of elements has an upper

bound. Then, by anet (xα)α∈∆ in a setX, we understand a function from the

index set∆ intoX.
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By a subnetwe understand a net(yβ)β∈B such that for anyα ∈ ∆ there is

β ∈ B such that for eachB 3 β′ ≥ β there isα′ ≥ α such thatyβ′ = xα′. A net

(xα)α∈∆ in a normed spaceX converges to some pointx ∈ X if for any ε > 0

there isα0 ∈ ∆ such that for anyα ≥ α0 we have‖xα − x‖ ≤ ε. We write this as

xα
n→ x or explicitly limα∈∆ xα = x in norm.

A net(xα)α∈∆ in an ordered setX is said to bedecreasing(in symbolsxα ↓) if

for anyα1, α2 ∈ ∆ with α1 ≥ α2 we havexα1 ≤ xα2 . The notationxα ↓ x means

thatxα ↓ andinf{xα; α ∈ ∆} = x. Furthermore, we writexα ↓≥ x if the net is

decreasing andxα ≥ x for all α ∈ ∆.

Symbolsxα↑ , xα ↑ x, andxα ↑≤ x have analogous meaning.

Using these definitions we can analyse convergence of increasing and decreas-

ing nets, where the limit is, respectively, the supremum or infimum of the net. If

(xα)α∈∆ is a net of arbitrary elements ofX, then we say that it isorder convergent

to x if there are nets(yβ)β∈B and(zγ)γ∈Γ such thatyβ↑ x, zγ ↓ x and such that

for anyβ ∈ B andγ ∈ Γ there isα ∈ ∆ such thatyβ ≤ xα ≤ zγ. We write this

asxα
o→ x. It can be proved, [1, p. 17], that we can take the setsB andΓ to be

equal.

We note that a net in a partially ordered space can have at most one order limit.

Furthermore, if eitherxα↑ x or xα ↓ x, thenxα
o→ x. Conversely, ifxα↑ (resp.,

xα ↓) andxα
o→ x, thenxα↑ x (resp.,xα ↓ x). The proofs can be found in [9,

Examples 2.71 and 2.72]. One of the basic results here is

Proposition 2 LetX be a normed lattice. Then:

(1) The positive coneX+ is closed.

(2) If X 3 xα↑ and limα∈∆ xα = x in the norm ofX, then

x = sup{xα; α ∈ ∆}.
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(3) If X 3 xα ↓ andlimα∈∆ xα = x in the norm ofX, then

x = inf{xα; α ∈ ∆}.

Proof. (1) BecauseX+ = {x ∈ X; x− = 0} and lattice operationX 3 x →
x− ∈ X is continuous we see thatX+ is closed.

(2) For any fixedα ∈ ∆ we have

lim
β∈∆

(xβ − xα) = x− xα

in norm andxβ − xα ∈ X+ for β ≥ α so thatx− xα ∈ X+ for anyα ∈ ∆ by (1).

Thusx is an upper bound for the net{xα}α∈∆. On the other hand, ifxα ≤ y for

all α, then0 ≤ y − xα
n→ y − x so that, again by (1), we havey ≥ x and hence

x = sup{xα; α ∈ ∆}.

The proof of (3) is analogous. �

Example 18 The converse of Proposition 2(2) is false; that is, we may havexα↑ x
but(xα)α∈∆ does not converge in norm. Indeed, considerxn = (1, 1, 1 . . . , 1, 0, 0, . . .) ∈
l∞, where 1 occupies only then first positions. Clearly,supn∈N xn = x :=

(1, 1, . . . , 1, . . .) but‖xn − x‖∞ = 1.

This example justifies introducing a special class of Banach lattices.

Definition 8 We say that a Banach latticeX has order continuous norm if for any

net(xα)α∈∆, xα ↓ 0 implies‖xα‖↓ 0.

Before we give examples of Banach lattices with order continuous norm, we

state and prove basic properties of them.
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Theorem 19 [3, Theorem 12.9] For a Banach latticeX, the statements below are

equivalent.

(1)X has order continuous norm;

(2) If 0 ≤ xn↑≤ x holds inX, then(xn)n∈N is a Cauchy sequence;

(3)X is σ-order complete andxn ↓ 0 implies‖xn‖ → 0;

(4)X is an ideal inX∗∗;

(5) For everya, b ∈ X, the order interval{x; a ≤ x ≤ y} is weakly compact.

Moreover, every Banach lattice with order continuous norm is order complete.

Example 20 For 1 ≤ p < ∞, the Banach latticeLp(Ω) has order continuous

norm. Indeed, letfn ↓ 0 almost everywhere. Then‖fn‖p =
∫

Ω
fp

ndµ→ 0 from the

dominated convergence theorem and the statement follows from Theorem 19(3)

asLp(Ω) is σ-order complete by Example 8.

Incidentally, this gives an independent proof thatLp(Ω), 1 ≤ p <∞ are order

complete.

On the other hand,L∞(Ω) is order complete by Example 8 but its norm is

not order continuous. To see this, consider theσ-algebraΣ of measurable subsets

of Ω and let∆ be the subset ofΣ containing the sets which differ fromΩ by

sets of positive measure, directed by the relation of inclusion. Finally, take the

net (χα)α∈∆ of characteristic functions of sets from∆. ThenχΩ − χα ↓ 0 but

‖χΩ − χα‖ = 1 for all α ∈ ∆.

The importance of Banach lattices with order continuous norm stems mainly

from property 2 of Theorem 19 which states that increasing sequences dominated
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in the order sense must necessarily converge in norm. There is an important subset

of this class of Banach lattices with a stronger property that increasing and norm

bounded sequences are norm convergent.

Definition 9 We say that a Banach latticeX is aKB-space(Kantorovǐc–Banach

space) if every increasing norm bounded sequence of elements ofX+ converges

in norm inX.

Example 21 We observe that ifxn ↑ x, then‖xn‖ ≤ ‖x‖ for all n ∈ N and

thus anyKB-space has order continuous norm by Theorem 19. Hence, spaces

which do not have order continuous norm cannot beKB-spaces. This rules out

the spaces of continuous functions,l∞ andL∞(Ω).

To see that theKB-class is indeed strictly smaller, let us consider the spacec0.

First we prove that it has order continuous norm. It is clearlyσ-order complete.

Let the sequence(xn)n∈N, given byxn = (xn
k)k∈N, satisfyxn ↓ 0. For a given

ε > 0, we findk0 such that|x1
k| < ε for all k ≥ k0. Because(xn)n∈N is decreasing,

we also have|xn
k | < ε for all k ≥ k0 andn ≥ 1. Then, we findn0 such that

|xn
k | < ε for all n ≥ n0 and1 ≤ k ≤ k0 and combining these estimates we see

that‖xn‖ < ε for all n ≥ n0 so‖xn‖ → 0.

On the other hand, let us again take the sequencexn = (1, 1, . . . , 1, 0, 0, . . .)

where 1 occupiesn first positions. It is clearly norm bounded and increasing, but

it does not converge in norm to any element ofc0. Hence,c0 has not got an order

continuous norm.

The next theorems characterize theKB-spaces which appear in applications.

Theorem 22 [9, Theorem 2.82] Assume thatX is a weakly sequentially complete

Banach lattice. If(xn)n∈N is increasing and(‖xn‖)n∈N is bounded, then there is

x ∈ X such thatlimn→∞ xn = x in X.
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The next result shows the same property forAL-spaces.

Theorem 23 AnyAL-space is aKB-space.

Proof. If (xn)n∈N is an increasing and norm bounded sequence, then for0 ≤ xn ≤
xm, we have

‖xm‖ = ‖xm − xn‖+ ‖xn‖

asxm − xn ≥ 0 so that

‖xm − xn‖ = ‖xm‖ − ‖xn‖ = |‖xm‖ − ‖xn‖| .

By assumption,(‖xn‖)n∈N is monotonic and bounded, and hence convergent, we

see that(xn)n∈N is Cauchy. �

3.5 Complexification

Our main interest is in real operators on real Banach spaces. However, in some

cases, especially when we want to use spectral theory, we need to move the prob-

lem to a complex space. This is done by the procedure calledcomplexification.

Definition 10 LetX be a real vector lattice. The complexificationXC of X is

the set of pairs(x, y) ∈ X ×X where, following the scalar convention, we write

(x, y) = x+ iy. Vector operations are defined as in scalar case

x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2),

(α+ iβ)(x+ iy) = αx− βy + i(βx+ αy).

The partial order inXC is defined by

x0 + iy0 ≤ x1 + iy1 if and only if x0 ≤ x1 and y0 = y1. (37)

43



The operations of the complex adjoint, real part, and imaginary part ofz = x+ iy

are defined through:

z̄ = x+ iy = x− iy,

<z =
z + z̄

2
= x,

=z =
z − z̄

2i
= y.

Remark 4 Note, that from the definition, it follows thatx ≥ 0 inXC is equivalent

to x ∈ X andx ≥ 0 in X. In particular,XC with partial order (37) is not a lattice.

It is a more complicated task to introduce a norm onXC because standard

product norms, in general, fail to preserve the homogeneity of the norm.

First we introduce the modulus onXC . In the scalar case we obviously have

sup
θ∈[0,2π]

(α cos θ + β sin θ) = |α+ iβ|. (38)

Mimicking this, forx+ iy ∈ XC we define

|x+ iy| = sup
θ∈[0,2π]

(x cos θ + y sin θ).

It can be proved that this element exists. This follows because elements over

which we take the supremum belong to the principal ideal generated by|x| + |y|
and, as we noted when discussingAM -spaces, such an ideal is an AM-space with

unit |x|+ |y| and thus it is lattice isometric to someC(Ω). ForC(Ω) the existence

of |x+ iy| is proved pointwise by the argument leading to (38).

Such a defined modulus has all standard properties of the scalar complex mod-

ulus, [2, Problem 3.2.2]: for anyz, z1, z2 ∈ XC andλ ∈ C,
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(a) |z| ≥ 0 and|z| = 0 if and only if z = 0,

(b) |λz| = |λ||z|,

(c) |z1 + z2| ≤ |z1|+ |z2| (triangle inequality),

and thus one can define a norm on the complexificationXC by

‖z‖c = ‖x+ iy‖c = ‖|x+ iy|‖. (39)

As the norm‖ · ‖ is a lattice norm, we have‖z1‖c ≤ ‖z2‖c, whenever|z1| ≤ |z2|,
and‖ · ‖c becomes a lattice norm onXC .

Definition 11 A complex Banach lattice is an ordered complex Banach spaceXC

that arises as the complexification of a real Banach latticeX, according to Defi-

nition 10, equipped with the norm (39).

We extendA toXC according to the formula

AC(x+ iy) = Ax+ iAy,

and observe that ifA is a positive operator between real Banach latticesX andY

then, forz = x+ iy ∈ XC , we have

(Ax)cos θ + (Ay)sin θ = A(x cos θ + y sin θ) ≤ A|z|.

therefore|ACz| ≤ A|z|. Hence for positive operators

‖AC‖c = ‖A‖. (40)

There are examples, where‖A‖ < ‖AC‖c.

Note that the standardLp(Ω) andC(Ω) norms are of the type (39). These

spaces have a nice property of preserving the operator norm even for operators

which are not necessarily positive, see [9, p. 63].
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Example 24 Any positive linear operatorA on XC is a real operator; that is,

A : X → X. In fact, letXC 3 x = x+ − x−. By definition,Ax+ ≥ 0 and

Ax− ≥ 0 soAx+, Ax− ∈ X and thusAx = Ax+ − Ax− ∈ X.

Remark 5 If for a linear operatorAwe prove that it generates a semigroup of say,

contractions, inX, then this semigroup will be also a semigroup of contractions

on XC , hence, in particular,A is a dissipative operator in the complex setting.

Due to this observation we confine ourselves to real operators in real spaces.

3.6 Series of Positive Elements in Banach Lattices

In this subsection we discuss two results which are series counterparts of the dom-

inated and monotone convergence theorems in Banach lattices.

Theorem 25 Let (xn(t))n∈N be family of nonnegative sequences in a Banach lat-

ticeX, parameterized by a parametert ∈ T ⊂ R, and lett0 ∈ T .

(i) If for eachn ∈ N the functiont → xn(t) is non-decreasing andlim
t↗t0

xn(t) =

xn in norm, then

lim
t↗t0

∞∑
n=0

xn(t) =
∞∑

n=0

xn, (41)

irrespective of whether the right hand side exists inX or ‖
∞∑

n=0

xn‖ :=

sup{‖
N∑

n=0

xn‖; N ∈ N} = ∞. In the latter case the equality should be

understood as the norms of both sides being infinite.

(ii) If lim
t→t0

xn(t) = xn in norm for eachn ∈ N and there exists(an)n∈N such that

xn(t) ≤ an for any t ∈ T, n ∈ N with
∞∑

n=0

‖an‖ < ∞, then(41) holds as

well.
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Remark 6 Note that ifX is aKB-space, thenlimt↗t0

∞∑
n=0

xn(t) ∈ X implies

convergence of
∑∞

n=0 xn. In fact, sincexn ≥ 0 (by closedness of the positive

cone),N →
∑N

n=0 xn is non-decreasing, and hence either
∑∞

n=0 xn ∈ X, or

‖
∑∞

n=0 xn‖ = ∞, and in the latter case we have

∥∥∥∥limt↗t0

∞∑
n=0

xn(t)

∥∥∥∥ = ∞.

3.7 Spectral Radius of Positive Operators

LetA ∈ L(X). First we note that that the peripheral spectrumσper,r(A), see (22),

is non-empty. Also,r(A) ∈ {|λ|; λ ∈ σ(A)}. This follows from the compactness

of σ(A).

As a more serious application of the theory of Banach lattices, here we prove

that ifA is a positive operator, then its spectral radius is an element of the spectrum

of A; that is,r(A) ∈ σ(A). This, and related, results are usually referred to as the

Frobenius-Perron theorem, after the authors of the matrix versions of them.

First we note that we can carry the considerations in the complexification of

X, if necessary. Since all operators are positive, the operator norms in the real

lattice and its complexification are equal, see (40) and we shall not distinguish

them in the proofs.

Theorem 26 Letr(A) be the spectral radius of a positive operatorA on a Banach

latticeX. Thenr(A) ∈ σ(A).

Proof. Let λn = r(A) + 1/n, thenλn ∈ ρ(A) for anyn. Sinceλn → r(A). To

show thatr(A) ∈ σ(A), it suffices, by Theorem 3, to showlimn→∞ ‖R(λn, A)‖ =

∞.

Since the peripheral spectrum is non-empty, letα ∈ σ(A) with |α| = r(A)

and defineµn = αλn/|α|. We haveµn ∈ ρ(A) andµn → α so that, invoking
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Theorem 3 again,limn→∞ ‖R(µn, A)‖ = ∞. Next, for eachn we pick a unit

vectorzn satisfying

‖R(µn, A)zn‖ ≥
1

2
‖R(µn, A)‖

Using the series representation of the resolvent (17) we easily infer

|R(λ,A)z| ≤ R(|λ|, A)|z|

so that|R(µn, A)zn| ≤ R(λn, A)|zn| and consequently

‖R(λn, A)‖ ≥ ‖R(λn, A)|zn|‖ ≥ ‖R(µn, A)zn‖ ≥
1

2
‖R(µn, A)‖

which proves the thesis. �

Theorem 27 If A : X → X is a compact positive operator on a Banach lattice

X with r(A) > 0, thenr(A) is an eigenvalue with positive eigenvector.

Proof. Sincer(A) > 0, by Theorems 26 and 6 it is an eigenvalue. As in the

proof of the previous theorem, we putλn = r(A) + 1/n so thatλn ↓ r(A) and

‖R(λn, A)‖ → ∞ asn→∞. Furthermore, for eachn there iszn with ‖zn‖ = 1

satisfying

‖R(λn, A)zn‖ ≥
1

2
‖R(λn, A)‖.

We define

xn =
R(λn, A)zn

‖R(λn, A)zn‖
and note thatxn is a positive unit vector.

From

Axn − r(A)xn = (λn − r(A))xn + Axn − λnxn

=
xn

n
− zn

‖R(λn, A)zn‖

we obtain

‖Axn − r(A)xn‖ → 0, n→∞.
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SinceA is compact, the sequence(Axn)n∈N has a convergent subsequence which

we denote by(Axn)n∈N again. Usingr(A) > 0 and‖xn‖ = 1, we find from

the above thatxn converges to a positive (unit) vectorx. This vector satisfies

Ax = r(A)x. �

Corollary 1 The thesis of Theorem 27 remains valid if the positive operatorA is

only power compact.

Proof. If r = r(A) > 0 andA is power compact, then from the Spectral Mapping

Theorem we haveAkx = rkx for somex > 0. Puttingy =
∑k−1

i=0 r
iAk−1−ix we

find thaty > 0 (from positivity ofA,x andr) and

Ay − ry = Akx− rkx = 0.

Remark 7 The assumptionr(A) > 0 is crucial in infinite dimensional case (in

finite dimension convergence of a subsequence of(xn)n∈N is obvious. Possibly

the best result ensuring this was given by de Pagter, [42] and [1, p.359]. It reads

that an irreducible power compact positive operator has a positive spectral radius.

4 First semigroups

The semigroup theory is concerned with methods of finding solutions of the Cauchy

problem.

Definition 12 Given a complex Banach space and a linear operatorAwithD(A),

ImA ⊂ X and givenu0 ∈ X, find a functionu(t) = u(t, u0) such that

1. u ∈ C0([0,∞)) ∩ C1((0,∞)),
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2. for eacht > 0, u(t) ∈ D(A) and

u′(t) = Au(t), t > 0, (42)

3.

lim
t→0+

u(t) = u0 (43)

in the norm ofX.

A function satisfying all conditions above is called the classical (or strict) solu-

tion of (42), (43).

If the solution to (42), (43) is unique, then we can introduce a family of operators

(G(t))t≥0 such thatu(t, u0) = G(t)u0. Ideally,G(t) should be defined on the

whole space for eacht > 0, and the functiont → G(t)u0 should be continuous

for eachu0 ∈ X, leading to well-posedness of (42), (43). Moreover, uniqueness

and linearity ofA imply thatG(t) are linear operators. A fine-tuning of these

requirements leads to the following definition.

Definition 13 A family (G(t))t≥0 of bounded linear operators onX is called a

C0-semigroup, or a strongly continuous semigroup, if

(i) G(0) = I;

(ii) G(t+ s) = G(t)G(s) for all t, s ≥ 0;

(iii) limt→0+ G(t)x = x for anyx ∈ X.

A linear operatorA is called the (infinitesimal) generator of(G(t))t≥0 if

Ax = lim
h→0+

G(h)x− x

h
, (44)

withD(A) defined as the set of allx ∈ X for which this limit exists. Typically the

semigroup generated byA is denoted by(GA(t))t≥0.
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If (G(t))t≥0 is aC0-semigroup, then the local boundedness and (ii) lead to the

existence of constantsM > 0 andω such that for allt ≥ 0

‖G(t)‖X ≤Meωt. (45)

We say thatA ∈ G(M,ω) if it generates(G(t))t≥0 satisfying (45). Thetype, or

uniform growth bound, ω0(G) of (G(t))t≥0 is defined as

ω0(G) = inf{ω; there is M such that (45) holds}. (46)

From (44) and the condition (iii) of Definition 13 we see that ifA is the generator

of (G(t))t≥0, then forx ∈ D(A) the functiont→ G(t)x is a classical solution of

the following Cauchy problem,

∂tu(t) = A(u(t)), t > 0, (47)

lim
t→0+

u(t) = x. (48)

We note that ideally the generatorA should coincide withA but in reality very

often it is not so. In fact, a large part of the theory discussed here is concerned

with finding a relation betweenA and its realisationA which generates a semi-

group. Such problems are addressed later. However, for most of this section we

are concerned with solvability of (47), (48); that is, with the case whenA of (42)

is the generator of a semigroup.

We noted above that forx ∈ D(A) the functionu(t) = G(t)x is a classical

solution to (47), (48). Forx ∈ X \D(A), however, the functionu(t) = G(t)x is

continuous but, in general, not differentiable, norD(A)-valued, and, therefore, not

a classical solution. Nevertheless, it follows that the integralv(t) =
∫ t

0
u(s)ds ∈

D(A) and therefore it is a strict solution of the integrated version of (47), (48):

∂tv = Av + x, t > 0

v(0) = 0, (49)

or equivalently,

u(t) = A

t∫
0

u(s)ds+ x. (50)
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We say that a functionu satisfying (49) (or, equivalently, (50)) is amild solution

or integral solutionof (47), (48).

Proposition 3 Let (G(t))t≥0 be the semigroup generated by(A,D(A)). Then

t → G(t)x, x ∈ D(A), is the only solution of (47), (48) taking values inD(A).

Similarly, for x ∈ X, the functiont → G(t)x is the only mild solution to (47),

(48).

Thus, if we have a semigroup, we can identify the Cauchy problem of which

it is a solution. Usually, however, we are interested in the reverse question, that is,

in finding the semigroup for a given equation. The answer is given by the Hille–

Yoshida theorem (or, more properly, the Feller–Miyadera–Hille–Phillips–Yosida

theorem).

4.1 Around the Hille–Yosida Theorem

Theorem 28 A ∈ G(M,ω) if and only if

(a)A is closed and densely defined,

(b) there existM > 0, ω ∈ R such that(ω,∞) ⊂ ρ(A) and for alln ≥ 1, λ > ω,

‖(λI − A)−n‖ ≤ M

(λ− ω)n
. (51)

If A is the generator of(G(t))t≥0, then properties (i) and (ii) follow from the

formula relating(G(t))t≥0 with R(λ,A): for λ > ω0(G), whereω0(G) is defined

by (45), thenλ ∈ ρ(A) and

R(λ,A)x =

∞∫
0

e−λtG(t)xdt (52)
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is valid for allx ∈ X.

Another widely used formula relatingA with (G(t))t≥0 is:

G(t)x = lim
n→∞

(
I − t

n
A

)−n

x = lim
n→∞

(n
t
R
(n
t
, A
))n

x (53)

for anyx ∈ X, and the limit is uniform int on bounded intervals.

As we noticed earlier, a given operator(A,D(A)) can generate at most one

C0-semigroup. Using the Hille–Yosida theorem we can prove a stronger result

which is useful later.

Proposition 4 Assume that the closure(A,D(A)) of an operator(A,D) gener-

ates aC0-semigroup inX. If (B,D(B)) is also a generator such thatB|D = A,

then(B,D(B)) = (A,D(A)).

Without the assumption that the closure ofA is a generator there may be infinitely

many extensions of a given operator which generate a semigroup: consider the

semigroups generated by the realizations of the Laplacian subject to Dirichlet,

Neumann, or mixed boundary conditions – all the generators coincide if restricted

to the space ofC∞0 functions.

Example 29 Let X = Lp(I), whereI is eitherR or R+. In both cases we can

define a(left) translation semigroupby

(G(t)f)(s) := f(t+ s), f ∈ X, and s, t ∈ I. (54)

The semigroup property is obvious. Next, for eacht ≥ 0, we have

‖G(t)f‖p
p =

∫
I

|f(t+ s)|pds ≤
∫
I

|f(r)|pdr = ‖f‖p
p,
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where, in the caseI = R, we have the equality. Hence(G(t))t≥0 satisfies

‖G(t)‖ ≤ 1, (55)

and so(G(t))t≥0 is a semigroup of contractions.

To prove that(G(t))t≥0 is strongly continuous, we use an approximation ap-

proach. First letφ ∈ C∞0 (I). It is uniformly continuous (having compact support)

hence for anyε > 0 there isδ > 0 such that for anys ∈ I and0 < t < δ,

|φ(t+ s)− φ(s)| < ε.

Thus, ∫
I

|φ(t+ s)− φ(s)|pds ≤Mφε
p,

whereMφ is the measure of some fixed neighbourhood of the support ofφ con-

taining supports of alls → φ(t + s) with 0 < t < δ. BecauseC∞0 (I) is dense in

Lp(I) for 1 ≤ p < ∞, (55) allows us to use Banach-Steinhaus thorem to claim

that(G(t))t≥0 is a strongly continuous semigroup.

It follows that there is a measurable representation(t, s) → [G(t)f ](s) of

G(t)f which is measurable onR+ × I and such that the Riemann integral oft→
G(t)f coincides for almost everys ∈ I with the Lebesgue integral of[G(t)f ](s)

with respect tot. Note that in this case it follows directly as the composition of

a measurable function with(t, s) → t + s is measurable, but in general it is not

that obvious. Hence, from now on we do not distinguish between a vector-valued

function and its measurable representation.

Let us denote by(A,D(A)) the generator of(G(t))t≥0 and letg := Af ∈
Lp(I). Thus,∆hf := h−1(G(h)f − f) → g in Lp(I). Taking a compact interval

[a, b] ⊂ I, we have∣∣∣∣∣∣
b∫

a

(∆hf(s)− g(s))ds

∣∣∣∣∣∣ ≤
b∫

a

|∆hf(s)− g(s)|ds
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≤ |b− a|1/q‖∆hf − g‖Lp(I),

so

lim
h→0+

b∫
a

h−1(f(s+ h)− f(s))ds =

b∫
a

g(s)ds.

On the other hand, we can write

b∫
a

h−1(f(s+ h)− f(s))ds = h−1

b+h∫
b

f(s)ds− h−1

a+h∫
a

f(s)ds,

where the terms are the difference quotients of the function
∫ t

t0
f(s)ds att = a and

t = b, respectively. Becausef is integrable on compact intervals,
∫ t

t0
f(s)ds ∈

AC(I) (absolutely continuous) and its derivative is almost everywhere given by

the integrandf . By redefiningf on a set of measure zero, we can write

f(x) = f(a) +

x∫
a

g(s)ds, x ∈ I.

Thus, we see thatA ⊂ T , whereT is the maximal differential operator onLp(I).

SinceT is invertible, similarly to Proposition 4 we obtainA = T .

We note that the identification of the generator of the translation semigroup

can be done by finding the resolvent through the Laplace transform (52).

4.2 Dissipative Operators

LetX be a Banach space (real or complex) andX∗ be its dual. From the Hahn–

Banach theorem, for everyx ∈ X there existsx∗ ∈ X∗ satisfying

<x∗, x>= ‖x‖2 = ‖x∗‖2.

Therefore theduality set

J (x) = {x∗ ∈ X∗; <x∗, x>= ‖x‖2 = ‖x∗‖2} (56)
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is nonempty for everyx ∈ X.

Definition 14 We say that an operator(A,D(A)) is dissipativeif for everyx ∈
D(A) there isx∗ ∈ J (x) such that

< <x∗, Ax>≤ 0. (57)

An important equivalent characterisation of dissipative operators, [43, Theo-

rem 1.4.2], is thatA is dissipative if and only if for allλ > 0 andx ∈ D(A),

‖(λI − A)x‖ ≥ λ‖x‖. (58)

We note some important properties of dissipative operators.

Proposition 5 [26] If (A,D(A)) is dissipative, then

(i) Im(λI − A) = X for someλ > 0 if and only if Im(λI − A) = X for all

λ > 0.

(ii) A is closed if and only ifIm(λI − A) is closed for some (and hence all)

λ > 0.

(iii) If A is densely defined, thenA is closable andA is dissipative. Moreover,

Im(λI − A) = Im(λI − A).

Combination of the Hille–Yosida theorem with the above properties gives a

generation theorem for dissipative operators, known as the Lumer–Phillips theo-

rem ([43, Theorem 1.43] or [26, Theorem II.3.15]).

Theorem 30 For a densely defined dissipative operator(A,D(A)) on a Banach

spaceX, the following statements are equivalent.
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(a) The closureA generates a semigroup of contractions.

(b) Im(λI − A) = X for some (and hence all)λ > 0.

If either condition is satisfied, thenA satisfies (57) for anyx∗ ∈ J (x).

In particular, if we know thatA is closed then the density ofIm(λI − A) is

sufficient forA to be a generator. On the other hand, if we do not know a priori

thatA is closed thenIm(λI − A) = X yieldsA being closed and consequently

that it is the generator.

Example 31 If (A,D(A)) is a densely defined operator inX and bothA and its

adjointA∗ are dissipative, thenA generates a semigroup of contractions inX. In

fact, becauseA is dissipative and closed,Im(I−A) is closed. IfIm(I−A) 6= X,

then for some0 6= x∗ ∈ X∗ we have

0 =<x∗, x− Ax>=<x∗ − A
∗
x∗, x>

for all x ∈ D(A). BecauseA is densely defined,x∗ − A
∗
x∗ = 0 and becauseA

∗

is dissipative,x∗ = 0. HenceIm(I − A) = X andA is the generator of a dissi-

pative semigroup by Theorem 30. In particular, dissipative self-adjoint operators

on Hilbert spaces are always generators.

4.3 Nonhomogeneous Problems

Consider the problem of finding the solution to:

du

dt
(t) = Au(t) + f(t), 0 < t < T

u(0) = u0, (59)

where0 < T ≤ ∞, A is the generator of a semigroup, andf : (0, T ) → X

is a known function. Foru to be a continuous solution,f must be continuous.
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However, this condition proves to be insufficient. We observe that ifu is a classical

solution of (59), then it must be given by

u(t) = G(t)u0 +

t∫
0

G(t− s)f(s)ds. (60)

The integral is well defined even iff ∈ L1([0, T ], X) andu0 ∈ X. We callu

defined by (60) themild solutionof (59). For an integrablef suchu is contin-

uous but not necessarily differentiable, and therefore it may be not a solution to

(59). The following theorem gives sufficient conditions for a mild solution to be

a classical solution (see, e.g., [43, Corollary 4.2.5 and 4.2.6]).

Theorem 32 LetA be the generator of aC0-semigroup(G(t))t≥0 andx ∈ D(A).

Then (60) is a classical solution of (59) if either

(i) f ∈ C1([0, T ], X), or

(ii) f ∈ C([0, T ], X) ∩ L1([0, T ], D(A)).

The assumptions of this theorem are often too restrictive for applications. On

the other hand, it is not clear exactly what the mild solutions solve. We present

here a result from [26, p. 451] which is particularly suitable for the applications.

Proposition 6 A functionu ∈ C(R+, X) is a mild solution to (59) withf ∈
L1(R+, X) in the sense of (60) if and only if

∫ t

0
u(s)ds ∈ D(A) and

u(t) = u0 + A

t∫
0

u(s)ds+

t∫
0

f(s)ds, t ≥ 0. (61)
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4.4 Long time behaviour of semigroups

It is important to note that the Hille–Yosida theorem is valid in both real and

complex Banach spaces with the same formulation. Thus ifA is an operator in a

real Banach spaceX, generating a semigroup(G(t))t≥0, then its complexification

will generate a complex semigroup of the same type in the complexificationXC

of X. This allows us to extend (52) to complex values ofλ. Precisely, the integral

in (52) is absolutely convergent for<λ > ω0(A). Moreover, iterations of the

resolvent give the following formula,

R(λ,A)nx =
(−1)n−1

(n− 1)!

dn−1

dλn−1
R(λ,A)

=
1

(n− 1)!

∞∫
0

tn−1e−λtG(t)xdt, (62)

valid for all x ∈ X.

4.4.1 Story of four numbers

Formula (62) yields the estimate

‖R(λ,A)n‖ ≤ M

(<λ− ω0(G))n
, <λ > ω0(G). (63)

An immediate consequence of the above considerations is that the spectrum of a

semigroup generator is always contained in a left half-plane, given by the spectral

bound

s(A) = sup{<λ; λ ∈ σ(A)}, (64)

defined in (21). For semigroups generated by bounded operators and, in particular,

by matrices, Liapunov’s theorem, see e.g. [26, Theorem I.2.10], states that the

typeω0(G) of the semigroup is equal tos(A). This is no longer true for strongly

continuous semigroups in general; see for example, [43, Example 4.4.2] or [38,
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Example A-III.1.3], where it is shown that the translation semigroup[G(t)f ](s) =

f(t + s) on the spaceX = Lp(R+) ∩ E, whereE is the weighted spaceE :=

{f ∈ Lp(R+), esds}, whose generatorA is the differentiation operator, satisfies

ω0(G) = 0 ands(A) = −1.

That the typeω0(G) might be a rather crude estimate ofs(A) can be expected

because the former is determined by the absolute convergence of the Laplace in-

tegral and the Laplace integral may converge as an improper integral in a possi-

bly larger half-plane<λ > abs(G), where byabs(G) we denoted the abscissa

of convergence (of the Laplace integral treated as an improper integral). That,

abs(G) = inf{λ ∈ C} for which

Bλx := lim
τ→∞

τ∫
0

e−λtG(t)xdt (65)

exists for allx ∈ X. Moreover, any suchλ satisfiesλ ∈ ρ(A) andBλx =

R(λ,A)x for all x ∈ X.

Thus at this moment we only have the obvious estimate

s(A) ≤ ω0(G) < +∞. (66)

We can prove, however, thatabs(G) controls the growth of classical solutions

of (47), (48), that is, of the solutions emanating fromx ∈ D(A). To make this

concept precise, we define thegrowth boundω1(G) by

ω1(G) = inf{ω; there isM such that ‖G(t)x‖ ≤Meωt‖x‖D(A),

x ∈ D(A), t ≥ 0}. (67)

Clearly,ω1(G) ≤ ω0(G). The following result is true.

Proposition 7 For a semigroup(G(t))t≥0 we have

ω1(G) = abs(G). (68)
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4.4.2 Fine structure of the spectrum ofA and long time behaviour of(G(t))t≥0

One of the most important questions in the theory of strongly continuous semi-

groups is to determine the long time behaviour of a semigroup through spectral

properties of its generator.

Spectral Mapping Theorem for semigroups If (G(t))t≥0 is generated by a

bounded operatorA, thenG(t) = exp tA and the the Spectral Mapping Theorem

(23) gives

σ(G(t)) = etσ(A). (69)

Hence

etω(G) = r(G(t)) = ets(A)

and thus, in particular, (69) yields the Lyapunov theorem for dynamical systems

generated by bounded operators. However, we have seen that forC0-semigroups

the spectrum of the generator does not fully determine the spectrum of the semi-

group; that is, the Spectral Mapping Theorem (23) fails in this case.

Note that while the number zero can be in the spectrum of a semigroup(G(t))t≥0

(e.g. for eventually compact semigroups), it cannot be obtained from any finite

spectral value ofA through (69). Thus, we shall restrict our considerations to

σ(G(t)) \ {0}. Furthermore, validity of (69) for a givenλ ∈ σ(G(t)) means that

there existk ∈ Z such that

µ+ 2kπi/t ∈ σ(A) with λ = etµ. (70)

We note the following general result, [26, Theorems 6.2 and 6.3]

Theorem 33 Let(G(t))t≥0 be the strongly continuous semigroup generated byA.

Then
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1. etσ(A) ⊂ σ(G(t));

2. etσp(A) = σp(G(t)) \ {0};

3. etσr(A) = σr(G(t)) \ {0};

4. etσa(A) ⊂ σa(G(t))

Ultrapowers in the context of semigroups As we noted above, the main ob-

stacle for validity of the Spectral Mapping Theorem is caused by the approximate

spectrum. We have introduced a method of converting the approximate spectrum

into the point spectrum in Paragraph 2.2.2 and it is natural to ask whether it can

be used to alleviate the encountered problems. Let(G(t))t≥0 be a strongly con-

tinuous semigroup. As noted in Par. 2.2.2, for eacht ≥ 0, the bounded operator

G(t) extends toĜ(t) onX preserving norms, spectra etc. Unfortunately, the fam-

ily (Ĝ(t))t≥0 is strongly continuous if and only if the generatorA of (G(t))t≥0 is

bounded. The problem is created at the first step of construction as the extension

of (G(t))t≥0 to l∞(X), denoted by(G̃(t))t≥0,

G̃(t)[(xn)n∈N] := (G(t)xn)n∈N

is not strongly continuous.

To get around this difficulty, we proceed as in the definition of thesun-dual

and first define the subspace ofl∞(X) by

lG∞(X) := {(xn)n∈N ∈ l∞(X); lim
t→0+

‖G(t)xn − xn‖ = 0,

uniformly in n}

ClearlylG∞(X) is (G̃(t))t≥0 invariant and it turns out that the restriction of(G̃(t))t≥0

to this subspace is strongly continuous. Moreover, since a strongly continuous

semigroup is uniformly continuous on compact subsets, we see thatc0(X) ⊂
lG∞(X). Then, instead of̂X, we consider the quotient space

X̂G = lG∞(X)/c0(X) (71)
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and define the semigroup(Ĝ(t)(t))t≥0 as the canonical projection of(G̃(t)(t))t≥0

to X̂G:

Ĝ(t)[(xn)n∈N + c0(X)] := (G(t)xn)n∈N + c0(X) (72)

for (xn)n∈N ∈ lG∞(X). Again, with the canonical injectionX 3 x→ (x, x, . . .) ∈
X̂G the operatorŝG(t) become extensions ofG(t) for any t ≥ 0 and restrictions

of Ĝ(t) defined onX̂. Using standard results for quotient semigroups, we find

that the generator̂A of (Ĝ(t)(t))t≥0 on X̂G is given by

Â[(xn)n∈N + c0(X)] = (Axn)n∈N + c0(X) on

D(Â) = {(xn)n∈N + c0(X); (xn)n∈N ∈ D(A),

(xn)n∈N, (Axn)n∈N ∈ X̂G}

Unfortunately, there is a price to pay: in general it is not true thatσ(G(t)) =

σ(Ĝ(t)). This apparent contradiction with Theorem 5 is explained by the obser-

vation that the later theorem would refer tôG(t) and not toĜ(t). For instance, an

approximate eigenvector forG(t) may fail to satisfy the condition defininglG∞(X)

and thus fail to be an approximate eigenvector ofĜ(t). Of course, if an approxi-

mate eigenvector(xn)n∈N satisfies(xn)n∈N ⊂ lG∞(X), thenx̂ = (xn)n∈N + c0(X)

it is an eigenvector of̂G(t). We will see one way of getting around this difficulty

below.

Eventually uniformly continuous semigroups If a semigroup(G(t))t≥0 is con-

tinuous in the uniform operator topology fort ≥ 0, then is generator is bounded

and we can use classical Lyapunov theorem. However, if(G(t))t≥0 is uniformly

continuous fort > 0 (immediately uniformly continuous) or even fort ≥ t0 for

somet0 > 0 (eventually uniformly continuous), then the situation becomes non-

trivial. We note that analytic semigroups and eventually compact semigroups are

eventually uniformly continuous.

To prove the latter statement assume thatT (t0) is compact and lett, s ≥ t0.

Sincet→ G(t)x is uniformly continuous forx in compact sets (Banach-Steinhaus
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theorem) andG(t0)B1 is relatively compact (B1 is the unit ball), we have that

lim
t→s

(G(t)x−G(s)x) = lim
t→s

(G(t− t0)−G(s− t0))G(t0)x

converges uniformly to zero forx ∈ B1 giving uniform continuity of(G(t))t≥0

for t ≥ t0.

Theorem 34 If (G(t))t≥0 is an eventually uniformly continuous semigroup with

generatorA, then

σ(G(t)) \ {0} = etσ(A).

Proof. For the proof it suffices to show thatσa(G(t))\{0} ⊂ etσa(A). Furthermore,

it is enough to consider1 ∈ σa(G(t1)) for somet1 > 0. In fact, any otherλ and

t2 can be reduced to this situation by considering the rescaled semigroup

(S(t)(t))t≥0 = (e−t ln λ/t1G(tt2/t1))t≥0

with generatorB = (t2A− lnλ)/t1. The spectral properties of1 for S(t1) are the

same as ofλ for G(t2) as

G(t2)− λI = λ(S(t1)− I).

Take(fn)n∈N ∈ σa(G(t1)); that is‖f‖ = 1 with

lim
n→∞

‖G(t1)fn − fn‖ = 0.

Let (G(t))t≥0 be uniformly continuous fort ≥ t0. We choosek ∈ N such that

kt1 > t0 and definegn = G(kt1)fn. Then we have

lim
n→∞

‖gn‖ = lim
n→∞

‖[G(t1)]
nfn‖ = lim

n→∞
‖fn‖ = 1
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as well as

lim
n→∞

‖G(t1)gn − gn‖ ≤ lim
n→∞

‖G(t1)‖k‖G(t1)fn − fn‖ = 0,

so (gn)n∈N also is an approximate eigenvector with approximate eigenvalue 1.

However,(G(t))t≥0 is uniformly continuous on sets of the formG(t0)U whereU

is a bounded set. In particular,(G(t))t≥0 is uniformly continuous on(gn)n∈N and

hencêg = (gn)n∈N is an element in the semigroup ultrapowerX̂G.

By comments at the end of Example 4.4.2,ĝ is an eigenvector of(Ĝ(t))t≥0

with eigenvalue 1 hence, by the Spectral Mapping Theorem for the point spectrum,

there is an eigenvalue2πin/t1 of Â for somen ∈ Z. Sinceσ(A) = σ(Â), we

obtain the thesis. �

Another theorem which plays an important role in analysis of long time be-

haviour of semigroups is

Theorem 35 If (A,D(A)) is the generator of an eventually uniformly continuous

semigroup(G(t))t≥0, then, for everyb ∈ R, the set{λ ∈ σ(A); <λ ≥ b} is

bounded.

Proof. Fix arbitrarya > ω0(G). The proof consists in showing that for every

γ > 0 there existr0 ≥ 0 such that for anyr > r0 we havedist(a+ ir, σ(A)) ≥ γ.

Indeed, if we assume the contrary, then there existsγ such that for anyr0 there is

r > r0 with dist(a + ir, σ(A)) < γ which, in turn, shows thatσ(A) extends to

infinity in the stripa − γ =: b < <λ < a, showing its unboundeness. Further,

using (18), we find

dist(a+ ir, σ(A)) =
1

r(R(λ+ ir, A))
≥ ‖R(λ+ ir, A)n‖−1/n

so we have to prove that for anyε > 0 there isr0 andn such that for allr > r0 we

have‖R(λ+ ir, A)n‖1/n < ε.
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The proof uses the representation

R(a+ ir, A)n+1x =
1

n!

∞∫
0

e−(a+ir)ttnG(t)xdt.

We use the fact thatt → ‖G(t)‖ is measurable. If(G(t))t≥0 is uniformly con-

tinuous fort ≥ t1, then the domain of integration is split into[0, t1], [t1, t2] and

[t2,∞). The first integral can be made uniformly small by sufficiently largen, the

last by sufficiently larget2 and the for the integral over[t1, t2] for fixed t2 we use

uniform continuity of the integrand and the Riemann-Lebesgue lemma to show

that it is small for sufficiently larger. �

4.4.3 Bad spactrum – chaos

Though our main interest lies with linear dynamical systems, the general frame-

work discussed here applies to a much larger class of dynamical systems.

Let the space(X, d) be a complete metric space and(G(t))t≥0 be a continuous

dynamical system onX with generatorA. By O(p) = {G(t)p}t≥0 we denote the

orbit of (G(t))t≥0 originating fromp.

We say that(G(t))t≥0 is topologically transitiveif for any two non-empty open

setsU, V ⊂ X there ist0 ≥ 0 such thatG(t0)U ∩ V 6= ∅.

A periodic pointof (G(t))t≥0 is any pointp ∈ X satisfyingG(τ)p = p for

someτ > 0.

Definition 15 [23] Let X be a metric space. A dynamical system(G(t))t≥0 in X

is said to be (topologically)chaotic in X if it is transitive and its set of periodic

points is dense inX.
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Devaney’s definition is related to the property called hypercyclicity: a dynamical

system(G(t))t≥0 is calledhypercyclicif for somex ∈ X we have

{G(t)x}t≥0 = X;

that is,(G(t))t≥0 has a dense orbit inX.

Hypercyclicity is equivalent to topological transitivity. Thus, Devaney’s def-

inition means that(G(t))t≥0 is chaotic if it has an orbit dense inX and its set of

periodic points is dense.

Remark. Hypercyclic (and thus chaotic) dynamical systems can only occur

in separable spaces.

Positive criteria The classical criterion for chaoticity of linear semigroups is

given in the following theorem.

Theorem 36 [22] LetX be a separable Banach space and letA be the generator

of a semigroup(G(t))t≥0 onX. Suppose that

1. The point spectrum ofA, σp(A), contains an open connected setU such that

U ∩ iR 6= ∅;
2. There exists a selectionU 3 λ→ x(λ) of eigenvectors ofA, that is analytic in

U ;

3. Span{x(λ), λ ∈ U} = X.

Then(G(t))t≥0 is chaotic.

The proof uses the observation that(G(t))t≥0 is hypercyclic if

X0 = {x ∈ X; lim
t→∞

G(t)x = 0}

X∞ = {w ∈ X; ∀ε>0∃x∈X,t>0‖x‖ < ε

and ‖G(t)x− w‖ < ε}
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are dense inX. Thus, if also the set of periodic pointsXp is dense, then(G(t))t≥0

is chaotic. Condition 3. is used through the following argument. IfU ′ ⊂ U with

an accumulation point inU andΦ ∈ X∗ satisfy< Φ, x(λ) >= 0 for λ ∈ U ′, then

from the principle of isolated zerosFΦ(λ) =< Φ, x(λ) >= 0 in U which by Con-

dition 3. is possible only ifΦ = 0. This in turn shows thatSpan{x(λ), λ ∈ U ′} =

X. Now, it is easy to see that the setsU− = U∩{λ,<λ < 0}, U+ = U∩{λ,<λ >
0}, U0 = U ∩ {λ,<λ = 0,=λ is rational} have accumulation points inU .

MoreoverSpan{x(λ), λ ∈ U−} ⊂ X0, by x(λ) = G(t)e−λtx(λ) we see that

Span{x(λ), λ ∈ U+} ⊂ X∞ andSpan{x(λ), λ ∈ U0} ⊂ Xp so that if Condition

3 is satisfied,X0, X∞ andXp are dense inX and therefore(G(t))t≥0 is chaotic.�

Proposition 8 If A is a closed operator inX and for some functionx(λ) that is

analytic in an open connected setU we have

Ax(λ) = λx(λ), (73)

then, denoting byan,λ0 then-th coefficient of Taylor’s expansion ofx(λ) at λ0 ∈
U , we have

Z = Zλ0 = Span{an,λ0 , n ∈ N0}

is independent ofλ0. Moreover, for anyU ′ ⊂ U having an accumulation point in

U we have

Z = Span{x(λ), λ ∈ U ′} = Span{x(λ), λ ∈ U}.

The proof is an essay about the identity

0 =< Φ, x(λ) >=
∞∑

n=0

< Φ, an,λ0 > (λ− λ0)
n

λ, λ0 ∈ U ′, Φ ∈ X∗, and the principle of isolated zeros. �
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Theorem 37 [16] Suppose that conditions 1. and 2 of Theorem 36 are satisfied.

Then there exists an infinite dimensional closed subspaceY ⊆ X that is invariant

for (G(t))t≥0 such that(G|Y (t))t≥0 is chaotic.

The proof of this result uses the previous proposition to show that closed linear

spans of eigenvectors with<λ > 0,<λ < 0 and<λ = 0 are the same. Since

a closed linear span of eigenvectors of the generator is invariant w.r.t. the semi-

group, the theorem follows. �

The previous result justifies the following definition.

Definition 16 Suppose(G(t))t≥0 is a continuous dynamical system onX. If there

exists a closed subspaceY which is invariant for(G(t))t≥0 such that

1. {G(t)x}t≥0 = Y for somex ∈ Y , then we say that(G(t))t≥0 is sub-

hypercyclic;

2. (G(t))t≥0 is chaotic inY , then we say that(G(t))t≥0 is sub-chaotic.

The subspaceY is called, respectively, the hypercyclicity and chaoticity subspace

for (G(t))t≥0.

Negative criteria It is important to distinguish cases when the dynamical sys-

tem cannot be chaotic, even in a subspace.

For setsM ⊂ X andN ⊂ X∗ denote

M⊥ = {f ∈ X∗; < f, x >= 0,∀x ∈M}
⊥N = {x ∈ X; < f, x >= 0,∀f ∈ N}.
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Theorem 38 Let (G(t))t≥0 be a continuous linear dynamical generated byA in

a Banach spaceX, having an orbit dense in some subspaceXch ⊂ X. Then

the adjointA∗ ofA and the dual dynamical system(G∗(t))t≥0 have the following

properties:

(i) Let 0 6= φ ∈ X∗. If {G∗(t)φ}t≥0 is bounded, thenφ ∈ X⊥
ch,

(ii) If φ is an eigenvector ofA∗, thenφ ∈ X⊥
ch.

In particular,(G(t))t≥0 cannot be chaotic if

σp(A
∗) = ∅.

The proof is based on the following observation. Let0 6= Φ ∈ X∗ be such that

‖G∗(t)Φ‖ is bounded. Consider

<G∗(t)Φ, x>=<Φ, G(t)x> .

Along a dense trajectory{G(t)x0}t≥0 (for a fixedx0) we can findx = T (tε)x0

for which ‖x‖ < ε and so the right hand side can be made arbitrarily small.

This shows (modulo some limiting argument) thatΦ is orthogonal to the span of

{G(t)x0}t≥0. Similar argument works for (ii). �

Corollary 2 LetE(λ) be the eigenspace corresponding toλ and

E∗ =
⊕

λ∈σ(A∗)

Eλ.

Then

Xch ⊆ ⊥E∗.

Consequently, if

codim ⊥E∗ < +∞,

then there is no subspace ofX in which(G(t))t≥0 is chaotic.
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These results can be used to rule out important classes of semigroups from being

hypercyclic.

Corollary 3 [22] Let (G(t))t≥0 be a strongly continuous semigroup generated by

A in a Banach spaceX. Assume that(G(t))t≥0 is eventually uniformly continuous

and that the resolvent ofA,R(λ,A) is compact. Then(G(t))t≥0 is not hypercyclic.

Indeed, a hypercyclic semigroup must have positive growth boundω0(G). Since

it is eventually uniformly continuous,s(A) = ω0(A) > −∞ by Theorem 34.

SinceR(λ,A) is compact,R(λ,A∗) is also compact and, sinces(A) > −∞, the

spectrum ofA is not empty and consists solely of eigenvalues. �

For instance, the diffusion semigroup on a bounded domain is analytic with

compact resolvent and thus cannot be chaotic.

Recent criteria

Theorem 39 [25] Let A be the generator of a strongly continuous semigroup

(G(t))t≥0 on a separable Banach spaceX. Assume that there isΩ := (ω1, ω2) ⊂
R with µ(Ω) > 0 and a strongly measurablex : Ω → X such thatAx(λ) =

iλx(λ) for almost anyλ ∈ Ω and

Span{x(λ); λ ∈ Ω \ Ω′} = X (74)

for anyΩ′ ⊂ R with µ(Ω′) = 0. Then(G(t))t≥0 is hypercyclic inX.

Remark. If x is continuous, then (74) can be replaced by

Span{x(λ); λ ∈ Ω} = X (75)

and one obtains automatically that(G(t))t≥0 is chaotic inX.

71



Proof. Note that: (a)x is a non-zero function, and (b) using a scalar multiplier

we can assume thatx is (Bochner) integrable.

The proof uses the Fourier transform

φ(r) =

∞∫
−∞

eirsx(s)ds

with x(s) extended by zero outsideΩ, if necessary. Denote

Yx = Span{φ(R)} = Span{φ(r); r ∈ R}. (76)

By Riemann-Lebesgue theorem (see e.g. [26, Lemma C.8]),φ ∈ C0(R, X); that

is, lim|r|→∞ φ(r) = 0. Let us fixr ∈ R. Since

[G(t)φ](r) =

∞∫
−∞

ei(t+r)sx(s)ds,

we see that

lim
t→∞

[G(t)φ](r) = 0.

Thus,Span{φ(R)} ⊂ X0. Similarly,

φ(r) = G(t)

∞∫
−∞

ei(−t+r)sx(s)ds =: [G(t)ψ](r)

where‖ψ(r)‖ can be made as small as we wish. Hence,Span{φ(R)} ⊂ X∞. The

last assumption is used to show thatYx = X. Assume thatΦ ∈ X∗ annihilates

Span{φ(R)}, then for anyr

0 =< Φ, φ(r) >=

∞∫
−∞

eirs < Φ, x(s) > ds

which, by uniqueness of the Fourier transform means thats →< Φ, x(s) > is

zero almost everywhere. Now, sincex(s) is only defined almost everywhere, to
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assertΦ = 0 we must assume that the property thatSpan{x(Ω)} = X is stable

under changes ofx on sets of measure zero. With this assumption we obtain, in

particular, that

Span{φ(R)} = X. (77)

Some generalizations A closer look at the proof above shows that actually we

have a stronger result:

Corollary 4 LetX be an arbitrary (not necessarily separable) Banach space. Let

all assumptions of Theorem 39 except (74) be satisfied ands→ x(s) is a non-zero

function. Then(G(t))t≥0 is hypercyclic inYx.

LetX be an arbitrary Banach space,(Ω, µ) be a measure space, andf : Ω →
X be a strongly measurable function. For any measurableU ⊂ Ω we define the

essential imageof U throughf defined as

f(U)ess := {x ∈ X; µ({s ∈ U : ‖f(s)− x‖ < ε}) 6= 0,∀ε > 0},

Lemma 3 LetU be a measurable subset ofΩ. The essential image has the fol-

lowing properties:

(a) If µ(U) > 0, thenf(U)ess ∩ f(U) 6= ∅. Consequently, the setZ of elements

x ∈ U such thatf(x) /∈ f(U)ess satisfiesµ(Z) = 0;

(b) If µ(U \ U ′) = 0, and f(U ′) ⊂ Span{f(U)ess}, thenSpan{f(U)ess} =

Span{f(U ′)}.

(c)Span{f(U)ess} is separable.

Theorem 40 Let (G(t))t≥0 be aC0-semigroup generated by the operatorA on

an arbitrary Banach spaceX. Assume thatσp(A) ∩ iR =: iΩ 6= ∅, whereΩ ⊂ R
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is measurable withµ(Ω) > 0, and that there is a (strongly) measurable function

x : Ω → X such that0 6= x(λ) ∈ ker(iλ− A) for anyλ ∈ Ω. Then(G(t))t≥0 is

sub-hypercyclic, with the hypercyclicity spaceXx := Span{x(Ω)ess}.

Corollary 5

Xx = Span{F [x(·)](r), r ∈ R}}

whereF is the Fourier transform ofλ→ x(λ).

Corollary 6 If there is an intervalI ⊂ Ω such thatx(I) ⊂ x(Ω)ess, then(G(t))t≥0

is subchaotic (with chaoticity space possibly smaller thatXx).

Corollary 7 Under notation of Theorem 40, ifΩ = [a, b] and x(λ) is weakly

(sequentially) continuous onΩ, then(G(t))t≥0 is chaotic inXf = Span{x(Ω)}.

A counterexample It is often suggested that sufficiently many periodic solu-

tions leads to chaos. For linear systems, periodic solutions are the solutions cor-

responding to imaginary eigenvalues, thus Theorem 40 seems to be a step in right

direction. However, we have:

Example 41 ConsiderX = Cb(R), the space of bounded continuous functions

with sup norm and translation semigroup(G(t))t≥0 onX:

(G(t)f)(x) = f(t+ x). (78)

Clearly,

‖G(t)f‖ = sup
x∈R

|f(t+ x)| = sup
x∈R

|f(x)| = ‖f‖

for anyf ∈ X, thus it is a semigroup of isometries but it is not aC0-semigroup

onX.
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Consider, however,Y = Span{fγ; γ ∈ R}, wherefγ(x) = eiγx. ThenY ⊂ X,

G(t)Y ⊂ Y and(G(t))t≥0 is a strongly continuous semigroup onY . Moreover,

Afγ = iγfγ

henceiR ⊂ σp(A) with corresponding eigenvectorsfγ(x) = eiγx. Thus we

have an example of a strongly continuous semigroup on a (non-separable) Banach

space which is not sub-hypercyclic and therefore the richness of the imaginary

point spectrum is not sufficient for chaos.

4.5 Positive Semigroups

Definition 17 LetX be a Banach lattice. We say that the semigroup(G(t))t≥0 on

X is positive if for anyx ∈ X+ andt ≥ 0,

G(t)x ≥ 0.

We say that an operator(A,D(A)) is resolvent positive if there isω such that

(ω,∞) ⊂ ρ(A) andR(λ,A) ≥ 0 for all λ > ω.

A strongly continuous semigroup is positive if and only if its generator is resolvent

positive. In fact, the positivity of the resolvent forλ > ω follows from (52) and

closedness of the positive cone; see Proposition 2. Conversely, the latter with

the exponential formula (53) shows that resolvent positive generators generate

positive semigroups.

A number of spectral results for semigroups can be substantially improved if

the semigroup in question is positive. The following theorem holds, [39, Theorem

1.4.1].

Theorem 42 Let (G(t))t≥0 be a positive semigroup on a Banach lattice, with
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generatorA. Then

R(λ,A)x =

∞∫
0

e−λtG(t)xdt (79)

for all λ ∈ C with<λ > s(A). Furthermore,

(i) Either s(A) = −∞ or s(A) ∈ σ(A) and

s(A) = ω1(G);

(ii) For a givenλ ∈ ρ(A), we haveR(λ,A) ≥ 0 if and only ifλ > s(A);

(iii) For all <λ > s(A) andx ∈ X, we have|R(λ,A)x| ≤ R(<λ,A)|x|.

From Theorem 42 we see that the spectral bound of the generator of a positive

semigroup controls the growth rate of all classical solutions. However, the strict

inequalitys(A) < ω0(G) can still occur, as was shown by Arendt; see [39, Ex-

ample 1.4.4]. In this exampleX = Lp([1,∞)) ∩ Lq([1,∞)), 1 ≤ p < q < ∞,

and the semigroup in question is(G(t)f)(s) := f(set), s > 1, t > 0. Its gen-

erator is(Af)(s) = sf ′(s) on the maximal domain and it can be proved that

s(A) = −1/p < −1/q = ω0(G). Interestingly enough,s(A) = ω0(G) holds for

positive semigroups onLp-spaces. This was proved a few years ago by L. Weis,

see the proof in, say, [39, Section 3.5]. However, for the casep = 1, which is most

relevant for the applications described in this book, it can be proved with much

less effort.

Theorem 43 Let (G(t))t≥0 be a positive semigroup on anAL-space and letA be

its generator. Thens(A) = ω0(G).

The theorem is a corollary of a general result known as the Datko theorem.
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Theorem 44 LetA be the generator of a semigroup(G(t))t≥0. If, for somep ∈
[1,∞),

∞∫
0

‖G(t)x‖pdt <∞, (80)

for all x ∈ X, thenω0(G) < 0.

Proof of Theorem 43.Defining<f, x>:= ‖x‖ for x ∈ X+ we obtain a positive

additive functional which can be extended to a bounded positive linear functional

by Theorems 14 and 15. Letω > abs(G) = s(A) (see Theorem 42). Then for

x ≥ 0 andτ > 0, we have
τ∫

0

e−ωt‖G(t)x‖dt =

〈
f,

τ∫
0

e−ωtG(t)xdt

〉
≤ <f,R(ω,A)x> .

Therefore
∞∫

0

e−ωt‖G(t)x‖dt < +∞

for all x ∈ X+ and hence for allx ∈ X. Theorem 44 then implies‖G(t)‖ ≤
Me(ω−µ)t for someµ > 0, henceω0(G) < ω which yieldsω0(G) ≤ s(A) and

consequentlys(A) = ω0(G). �

4.6 Generation through Perturbation

Verifying conditions of the Hille–Yosida, or even the Lumer–Phillips, theorems

for a concrete problem is quite often a formidable task. On the other hand, in

many cases the operator appearing in the evolution equation at hand is built as a

combination of much simpler operators that are relatively easy to analyse. The

question now is to what extent the properties of these simpler operators are inher-

ited by the full equation. More precisely, we are interested in the problem:
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Problem P. Let (A,D(A)) be a generator of aC0-semigroup on a

Banach spaceX and (B,D(B)) be another operator inX. Under

what conditions doesA+B generate aC0-semigroup onX?

Before attempting to address this problem we point out a difficulty that arises

immediately from the above formulation. AsA andB are unbounded operators,

we have to realize that the sumA + B is, at this moment, defined only as(A +

B)x = Ax + Bx onD(A + B) = D(A) ∩D(B), where the latter can reduce in

some cases to{0}. Also, the sum of two closed operators is not necessarily closed:

a trivial example is offered byB = −A andA + B = 0, defined onD(A), is not

a closed operator. Thus,A + B with B = −A does not generate a semigroup.

On the other hand, the closure ofA + B that is the zero operator defined on the

whole space is the generator of a constant uniformly bounded semigroup. This

situation happens quite often and suggests that the formulation of Problem P is

too restrictive and we often restrict ourselves to the following weaker formulation

of it.

Problem P′. Let (A,D(A)) be a generator of aC0-semigroup on

a Banach spaceX and (B,D(B)) be another operator inX. Find

conditions that ensure that there is an extensionK of A + B that

generates aC0-semigroup onX and characterise this extension.

The characterisation of extensions ofA+B that generate a semigroup (in general,

there can be many extensions having this property) provides essential information

on the properties of the semigroup and plays a role of the regularity theorems in

the theory of differential equations. The best situation is whenK = A + B or

K = A+B, as there is then a close link betweenK andA andB. However,

there are cases whereK is an unspecified extension ofA + B in which case

the semigroup can display features that are rather impossible to deduct from the

properties ofA andB alone.
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4.6.1 A Spectral Criterion

Usually the first step in establishing whetherA + B or some of its extensions

generates a semigroup is to find ifλI − (A+B) (or its extension) is invertible for

all sufficiently largeλ.

In all cases discussed here we have the generator(A,D(A)) of a semigroup

and a perturbing operator(B,D(B)) with D(A) ⊆ D(B).

We note thatB isA-bounded; that is, for somea, b ≥ 0 we have

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ D(A) (81)

if and only ifBR(λ,A) ∈ L(X) for λ ∈ ρ(A).

In what follows we denote byK an extension ofA + B. We now present an

elegant result relating the invertibility properties ofλI −K to the properties of 1

as an element of the spectrum ofBLλ, first derived in [28].

Theorem 45 Assume thatΛ = ρ(A) ∩ ρ(K) 6= ∅.

(a) 1 /∈ σp(BR(λ,A)) for anyλ ∈ Λ;

(b) 1 ∈ ρ(BR(λ,A)) for some/allλ ∈ Λ if and only ifD(K) = D(A) and

K = A+B;

(c) 1 ∈ σc(BR(λ,A)) for some/allλ ∈ Λ if and only ifD(A)  D(K) and

K = A+B;

(d) 1 ∈ σr(BR(λ,A)) for some/allλ ∈ Λ if and only ifK ) A+B.

Corollary 8 Under the assumptions of Theorem 45,K = A + B if one of the

following criteria is satisfied: for someλ ∈ ρ(A) either

(i) BR(λ,A) is compact (or, ifX = L1(Ω, dµ), weakly compact), or
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(ii) the spectral radiusr(BR(λ,A)) < 1.

Proof If (ii) holds, then obviouslyI − BR(λ,A) is invertible by the Neumann

series theorem:

(I −BR(λ,A))−1 =
∞∑

n=0

(BR(λ,A))n, (82)

giving the thesis by Proposition 45 (b). Additionally, we obtain

R(λ,A+B) = R(λ,A)(I −BR(λ,A))−1

= R(λ,A)
∞∑

n=0

(BR(λ,A))n. (83)

If (i) holds, then eitherBR(λ,A) is compact or, inL1 setting,(BR(λ,A))2 is

compact, [24, p. 510], and therefore, ifI − BR(λ,A) is not invertible, then1

must be an eigenvalue, which is impossible by Theorem 45(c). �

If we write the resolvent equation

(λI − (A+B))x = y, y ∈ X, (84)

in the (formally) equivalent form

x−R(λ,A)Bx = R(λ,A)y, (85)

then we see that we can hope to recoverx provided the Neumann series

R(λ) :=
∞∑

n=0

(R(λ,A)B)nR(λ,A)y =
∞∑

n=0

R(λ,A)(BR(λ,A))ny. (86)

is convergent. Clearly, if (82) converges, then we can factor outR(λ,A) from the

series above getting again (83). However,R(λ,A) inside acts as a regularising

factor and (86) converges under weaker assumptions than (82) and this fact is

frequently used to construct the resolvent of an extension ofA + B (see, e.g.,

Theorem 50, Theorem 58 or Section 4.7).
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4.6.2 Bounded Perturbation Theorem and Related Results

Theorem 46 Let (A,D(A)) ∈ G(M,ω) for someω ∈ R,M ≥ 1. If B ∈ L(X),

then(K,D(K)) = (A+B,D(A)) ∈ G(M,ω +M‖B‖).

Moreover, the semigroup(GA+B(t))t≥0 generated byA + B satisfies either

Duhamel equation:

GA+B(t)x = GA(t)x+

t∫
0

GA(t− s)BGA+B(s)xds, t ≥ 0, x ∈ X (87)

and

GA+B(t)x = GA(t)x+

t∫
0

GA+B(t− s)BGA(s)xds, t ≥ 0, x ∈ X, (88)

where the integrals are defined in the strong operator topology.

Moreover,(GA+B(t))t≥0 is given by the Dyson–Phillips series obtained by iterat-

ing (87):

GA+B(t) =
∞∑

n=0

Gn(t), (89)

whereG0(t) = GA(t) and

Gn+1(t)x =

t∫
0

GA(t− s)BGn(s)xds. t ≥ 0, x ∈ X. (90)

The series converges in the operator norm ofL(X) and uniformly fort in bounded

intervals.

Proof. First, the problem is reduced to one withω = 0 by shifting the genera-

tor, and then withM = 1 by renorming the space using the equivalent norm

|||x||| := sup
t≥0

‖GA(t)x‖. (91)
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Next, because any bounded operator isA-bounded (with constanta = 0), by

Theorem 45(b) we see thatλ ∈ ρ(A+B) if and only if I−BR(λ,A) is invertible

in L(X). By the Hille–Yosida theorem this can be achieved if<λ > ‖B‖ as then

r(BR(λ,A)) ≤ ‖BR(λ,A)‖ < 1 in which case the Neumann series (83) gives

the estimate

‖R(λ,A+B)‖ ≤ 1

<λ
· 1

1− ‖B‖
<λ

=
1

<λ− ‖B‖
(92)

yielding the generation result. The Duhamel formula (87) is obtained by consider-

ing the functionφx(s) = GA(t− s)GA+B(s)x, x ∈ D(A), ands ∈ [0, t]. Because

GA+B(s)x is inD(A) = D(A+B), φx is differentiable with

d

ds
φx(s) = GA(t− s)BGA+B(s)x

yielding (87) by integration and extension by density toX, which is justified as

all the operators are bounded. The other Duhamel formula follows by considering

the functionψx(s) = GA+B(t− s)GA(s)x.

Finally, the Dyson–Phillips expansion (89) follows by solving (87) by itera-

tions, as for a scalar Volterra equation.

4.6.3 Perturbations of Dissipative Operators

Theorem 47 Let A andB be linear operators inX with D(A) ⊆ D(B) and

A+ tB is dissipative for all0 ≤ t ≤ 1. If

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, (93)

for all x ∈ D(A) with 0 ≤ a < 1 and for somet0 ∈ [0, 1] the operator(A +

t0B,D(A)) generates a semigroup (of contractions), thenA + tB generates a

semigroup of contractions for everyt ∈ [0, 1].
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Proof. The proof consists in showing, by using Neumann expansion, that ifI −
(A + t0B) is invertible, thenI − (A + tB) is invertible provided|t − t0| <
1− a/(2a+b). Since the length of the interval on whichI−(A+tB) is invertible

is independent of the starting pointt0, by using finitely many successive steps,

we can cover the whole interval[0, 1]. Thus (A + tB,D(A)) is a dissipative

operator such thatI − (A + tB) is surjective for allt ∈ [0, 1]. It is also densely

defined becauseD(A) is dense and so(A + tB,D(A)) generates a semigroup of

contractions. �

The fact thata < 1 in the previous theorem is crucial and a lot of work has

been done to change< to =. One result, in general setting, is given below. Some

others, employing positivity, are discussed further on.

Theorem 48 LetA be the generator of a semigroup of contractions andB, with

D(A) ⊂ D(B), is such thatA+ tB is dissipative for allt ∈ [0, 1]. If

‖Bx‖ ≤ ‖Ax‖+ b‖x‖, (94)

for x ∈ D(A) andB∗ is densely defined, thenA+B is the generator of a con-

tractive semigroup.

Remark 8 If B is closable andX reflexive, thenB∗ is automatically densely

defined.

We complete this part with a quick glance at possibly the most general pertur-

bation theorem for general operators, called the Miyadera perturbation theorem.

We say that an operatorB is aMiyadera perturbationof A if B isA-bounded

and there exist numbersα andγ with 0 < α <∞, 0 ≤ γ < 1 such that
α∫

0

‖BGA(t)x‖dt ≤ γ‖x‖ (95)

for all x ∈ D(A).
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Theorem 49 If B is a Miyadera perturbation ofA, then(A + B,D(A)) is the

generator of aC0-semigroup(G(t))t≥0.

4.7 Positive Perturbations of Positive Semigroups

In most perturbation theorems of the previous chapter an essential role was played

by a strict inequality in some condition comparingA andB (or (GA(t))t≥0 and

B). This provided some link between the generator and both operatorsA andB,

and ensured that the semigroup was generated byA + B or, at worst, byA+B.

In many cases of practical importance, however, this inequality becomes a weak

inequality or even an equality. We show that in such a case we can still get ex-

istence of a semigroup albeit we usually lose control over its generator that can

turn to be a larger extension ofA + B thanA+B. In such a case the resulting

semigroup has properties that are not ‘contained’ inA andB alone; these are dis-

cussed in the next chapter. Here we provide the generation theorem, obtained in

[17], which is a generalisation of Kato’s result from 1954, [31], as well as some

of its consequences.

Theorem 50 LetX be aKB-space. Let us assume that we have two operators

(A,D(A)) and(B,D(B)) satisfying:

(A1) A generates a positive semigroup of contractions(GA(t))t≥0,

(A2) r(BR(λ,A)) ≤ 1 for someλ > 0(= s(A)),

(A3) Bx ≥ 0 for x ∈ D(A)+,

(A4) <x∗, (A+B)x>≤ 0 for anyx ∈ D(A)+, where <x∗, x>= ‖x‖,
x∗ ≥ 0.
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Then there is an extension(K,D(K)) of (A+B,D(A)) generating aC0-semigroup

of contractions, say,(GK(t))t≥0. The generatorK satisfies, forλ > 0,

R(λ,K)x = lim
n→∞

R(λ,A)
n∑

k=0

(BR(λ,A))kx

=
∞∑

k=0

R(λ,A)(BR(λ,A))kx. (96)

Remark 9 If −A is a positive operator, then assumption (A2) can be replaced by

the simpler one:

(A2’) ‖Bx‖ ≤ ‖Ax‖, x ∈ D(A)+.

Proof of Theorem 50. We define operatorsKr, 0 ≤ r < 1 by Kr = A + rB,

D(Kr) = D(A). We see that, as by (A2) the spectral radius ofrBR(λ,A) does

not exceedr < 1, the resolvent(λI − (A+ rB))−1 exists and is given by

R(λ,Kr) := (λI − (A+ rB))−1 = R(λ,A)
∞∑

n=0

rn (BR(λ,A))n , (97)

where the series converges absolutely and each term is positive. Hence, it follows

that

‖R(λ,Kr)y‖ ≤ λ−1‖y‖ (98)

for all y ∈ X. Therefore, by the Lumer–Phillips theorem, for each0 ≤ r < 1,

(Kr, D(A)) generates a contraction semigroup which we denote(Gr(t))t≥0. The

net(R(λ,Kr)x)0≤r<1 is increasing asr ↑ 1 for eachx ∈ X+ and{‖R(λ,Kr)x‖}0≤r<1

is bounded, so by assumption thatX is aKB-space, there is an elementyλ,x ∈ X+

such that

lim
r→1−

R(λ,Kr)x = yλ,x

in X. By the Banach–Steinhaus theorem we obtain the existence of a bounded

positive operator onX, denoted byR(λ), such thatR(λ)x = yλ,x. We use the

Trotter–Kato theorem to obtain thatR(λ) is defined for allλ > 0 and it is the
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resolvent of a densely defined closed operatorK which generates a semigroup of

contractions(GK(t))t≥0. Moreover, for anyx ∈ X,

lim
r→1−

Gr(t)x = GK(t)x, (99)

and the limit is uniform int on bounded intervals and, providedx ≥ 0, monotone

asr ↑ 1. By the monotone convergence theorem, Theorem 25, we have

R(λ,K)x =
∞∑

k=0

R(λ,A)(BR(λ,A))kx, x ∈ X (100)

and we can prove that

R(λ,K)(λI − (A+B))x = x

which shows thatK ⊇ A+B. �

The semigroup(GK(t))t≥0 obtained in Theorem 50 is the smallest in the fol-

lowing sense.

Proposition 9 LetD be a core ofA. If (G(t))t≥0 is another positive semigroup

generated by an extension of(A+B,D), thenG(t) ≥ GK(t).

The assumption (A2) of Theorem 50 is stronger than the assumption thatB is

A-bounded, used in Theorem 48. Thus, it is worthwhile to compare Theorem 50

with Theorems 48 and 47.

Proposition 10 Let (G(t))t≥0 be the semigroup generated byA + B or A+B

under conditions of Theorems 47 or 48, respectively. IfA is a resolvent positive

operator andB is positive, then(G(t))t≥0 is positive.

Proof. The first part follows as in the proof of Theorem 47 as the extensions

are done via the Neumann series which preserves positivity. Consider now the
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casea = 1. All the semigroups(Gr(t))t≥0 generated byA + rB are positive

semigroups of contractions. Moreover, for eachx ∈ D(A) we have

lim
r→1−

(A+ rB)x = (A+B)x

and it follows that the semigroup(G(t))t≥0, generated byA+B, is the limit

of semigroups(Gr(t))t≥0 asr → 1, that are positive. Hence(G(t))t≥0 is also

positive. �

Thus, ifX is reflexive andB is closable, then Theorem 48 is evidently stronger

than Theorem 50 as the former requires positivity of neither(GA(t))t≥0 nor ofB.

Moreover, in Theorem 48, we obtain the full characterisation of the generator as

the closure ofA+B. However, checking the closability of the operatorB in

particular applications is often difficult, whereas the positivity is often obvious.

Also, there is a large class of nonclosable operators which can nevertheless be

positive, for example, finite-rank operators (in particular, functionals) are clos-

able if and only if they are bounded, [32, p.166]. Moreover, Theorem 50 gives

a constructive formula (96) for the resolvent of the generator, which seems to be

unavailable in general case, and this, in turn, allows other representation results

that are discussed below. Also, what is possibly the most important fact, in nonre-

flexive spaces Theorem 50 refers to a substantially different class of phenomena

because, as we show in the next chapter, in many cases covered by this theorem

the generator does not coincide with the closure ofA + B. Arguments used in

the proof of Theorem 50 are very powerful and can be generalized in many ways.

We present here a theorem in which the sign of the perturbation is reversed; some

other with yet more general perturbations are given below.

Theorem 51 Let (A0, D(A0)) be the generator of a positive semigroup of con-

tractions on aKB-spaceX and(N,D(N)) be a positive operator. Assume that

there exists an increasing sequence((Nn, D(Nn)))n∈N of positive operators sat-

isfying

1. D(A0) ∩D(N) is dense inX,
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2. D(Nn) ⊃ D(N),

3. There is a dense setD ⊂ D(A0) ∩ D(N) such that lim
n→∞

Nny = Ny for

y ∈ D,

4. (A0−Nn, D(A0)∩D(Nn)) generates a positive semigroup of contractions

for n = 1, 2 . . ..

Then there is an extension(A, D(K)) of (A0−N,D) which generates a semigroup

of contractions.

The next result is known as the Desch perturbation theorem.

Theorem 52 LetA be the generator of a positiveC0-semigroup inX = L1(Ω)

and letB ∈ L(D(A), X) be a positive operator. If for someλ > s(A) the

operatorλI−A−B is resolvent positive, then(A+B,D(A)) generates a positive

C0-semigroup onX.

We note that the Desch theorem, Theorem 52, is in fact equivalent to the

Miyadera theorem. This is due to the fact that, for any operatorC with r(C) < 1,

we can introduce an equivalent norm onX = L1(Ω) for which ‖C‖ < 1 and,

under such norm, the assumptions of the Desch theorem become equivalent to the

ones for the Miyadera theorem. This, in particular, yields

Corollary 9 Let (G(t))t≥0 be the semigroup generated by(A + B,D(A)) (ac-

cording to Theorem 52). Then(G(t))t≥0 satisfies the Duhamel equation (88) and

is given by the Dyson–Phillips expansion (89).

Theorem 50 inL1-setting reads:
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Corollary 10 LetX = L1(Ω) and suppose that the operatorsA andB satisfy

1. (A,D(A)) generates a substochastic semigroup(GA(t))t≥0;

2.D(B) ⊃ D(A) andBu ≥ 0 for u ∈ D(B)+;

3. for all u ∈ D(A)+ ∫
Ω

(Au+Bu)dµ ≤ 0. (101)

Then the assumptions of Theorem 50 are satisfied.

Proof. First, assumption (101) gives us assumption (A4), that is, dissipativity on

the positive cone. Next, let us takeu = R(λ,A)x = (λI − A)−1x for x ∈ X+ so

thatu ∈ D(A)+. BecauseR(λ,A) is a surjection fromX ontoD(A), by

(A+B)u = (A+B)R(λ,A)x = −x+BR(λ,A)x+ λR(λ,A)x,

we have

−
∫
Ω

x dµ+

∫
Ω

BR(λ,A)x dµ+ λ

∫
Ω

R(λ,A)x dµ ≤ 0. (102)

Rewriting the above in terms of the norm, we obtain

λ‖R(λ,A)x‖+ ‖BR(λ,A)x‖ − ‖x‖ ≤ 0, x ∈ X+, (103)

from which‖BR(λ,A)‖ ≤ 1; that is, assumption (A2) is satisfied. �

The following extension of the above result could be proved by techniques of

Theorem 50.

Corollary 11 Assume thatA is the generator of a positiveC0-semigroup of con-

tractions inX = L1(Ω) and letB = B+ − B− be such thatB± ≥ 0, D(B±) ⊃
D(A) and there existsC ≥ 0 withD(A) ⊂ D(C) such thatB+ + B− ≤ C and

for all x ∈ D(A)+, ∫
Ω

(Ax+ Cx)dµ ≤ 0. (104)
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Then there is an extensionKB ofA+B which generates a semigroup of contrac-

tions.

The Dyson–Phillips expansion seems to be unavailable for semigroups gen-

erated under the assumptions of Theorem 50 in generalKB-spaces. However, it

can be proved in theL1 case. The following theorem is a consequence of Theorem

50 but can be also proved from scratch.

Theorem 53 Under the adopted assumptions, the Dyson–Phillips expansion

GK(t)f =
∞∑

n=0

Sn(t)f, f ∈ X, (105)

where the iteratesSn(t) are defined through

S0(t)f = GA(t)f,

Sn(t)f =

t∫
0

Sn−1(t− s)BGA(s)fds, n > 0, (106)

for f ∈ D(A) and t ≥ 0, converges uniformly int on bounded intervals to a

positive semigroup of contractions(G′(t))t≥0.

This semigroup satisfies the integral equation

G′(t)f = GA(t)f +

t∫
0

G′(t− s)BGA(s)fds (107)

for anyf ∈ D(A) andt ≥ 0. The generatorK ′ of (G′(t))t≥0 is given by

(I −K ′)−1f =
∞∑

n=0

(I − A)−1(B(I − A)−1)nf, (108)

and hence(G′(t))t≥0=(GK(t))t≥0, where(GK(t))t≥0 is the semigroup obtained

in Corollary 10.
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5 What can go wrong?

5.1 An overview

Let us consider the classical birth-and-death process that describes the evolution

of a population whose sizek at any timetmay increase tok+1 or decrease tok−1

owing to a ‘birth’ or ‘death’ of an individual; the probability that a birth or death

occurs in time interval∆t beingbk∆t+ o(∆t) anddk∆t+ o(∆t), respectively. If

we denote byuk(t) the probability that the population is of sizek at timet, then

the corresponding (so-called forward) Kolmogorov system takes the form:

u′0 = −b0u0 + d1u1,
...

u′n = −(bn + dn)un + dn+1un+1 + bn−1un−1,
... . (109)

We use the convention that boldface letters denote sequences; for example,u =

(u0, u1, . . . , un, . . .). We also putb−1 = d0 = 0 and, to avoid technicalities, we

assume thatbn, dn > 0 for all other indices.

System (109) is considered in the Banach spaceX = l1; this choice is dictated

by the fact that ifuk is the probability, thenuk ≥ 0 and

‖u‖ =
∞∑

k=0

uk = 1

so that the norm ofX should be preserved in the evolution.

First we introduce formal mappings of sequences. Remembering the conven-

tion b−1 = d0 = 0, we letw = Au = −{(bn + dn)un}n∈N0. By B we denote the

mappingv = Bu, wherev = {dn+1un+1 + bn−1un−1}n∈N0.
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The formal mappingsA andB can define various operators inX. As a ba-

sic choice, we define the operatorA in X as the restriction ofA to the domain

D(A) = {u ∈ X; Au ∈ X}. In particular, ifu ∈ D(A)+, thenv = Bu ∈ X+

with
∞∑

n=0

(vn + wn) = 0. (110)

This allows us to define a positive operatorB as the restriction ofB to D(A). It

follows then that foru ∈ D(A) we have

‖Bu‖ ≤ ‖Au‖. (111)

As we said earlier, mathematical equations of the applied sciences are built by

combining various conservation and constitutive laws. They are also formulated

and understood pointwise.

This means that all the operations, such as differentiation, summation, or in-

tegration, are meant in the classical ‘calculus’ sense, and the equation itself is

supposed to be satisfied for all reasonable values of the independent variables.

Thus the birth-and-death system (109) is basically understood as

u′ = Au + Bu, (112)

where the system, taken row by row, should be satisfied for allu for which the

expression above makes sense. The modelling interpretation suggests that one

should haveun(t) ≥ 0 for all n ∈ N0 andt ≥ 0, and

∞∑
n=0

un(t) =
∞∑

n=0

un(0) < +∞, t > 0.

However, if we prove the existence of a semigroup ‘solving’ (112), then what

we really obtain is a solution to a particular reformulation of the original problem

in which on the right-hand side stands the generatorK of this semigroup. This

generator may be quite different fromA+ B and only a detailed characterization
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of its domain can reveal whether the constructed semigroup gives the full picture

of the dynamics described by Eq. (112). As we show, the generatorK is between

the minimal operatorKmin = A+B (defined onD(A)) and the maximal operator

Kmax = A+ B defined on

Dmax = {u ∈ X; Au + Bu ∈ X};

that is,Kmin ⊂ K ⊂ Kmax. WhereK is situated on this scale determines the

well-posedness of the problem (112). The following situations are possible

1. Kmin = K = Kmax,

2. Kmin  K = Kmin = Kmax,

3. Kmin = K  Kmax,

4. Kmin  K = Kmin  Kmax,

5. Kmin  K  Kmax,

and each of them has its own specific interpretation in the model.

In all cases whereK  Kmax we don’t have uniqueness; that is, there are

differentiableX-valued solutions to (112) emanating from zero and therefore they

are not described by the constructed dynamical system: ‘there is more to life,

than meets the semigroup’ [12]. To achieve uniqueness here, one has to impose

additional constraints on the solution.

If Kmin  K, then despite the fact that the model is formally conservative,

(110), the solutions are not; the described quantity leaks out from the system and

the mechanism of this leakage is not present in the model. In the Markov processes

such a case is referred to as dishonesty of the transition function, [4].
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Finally, asbn, dn are the rates of change of states in the population, for any

solutionu(t), the quantity

∆t
∞∑

n=0

(bn + dn)un(t) (113)

describes the total number of state changes in the time interval∆t. Thus condi-

tion u(t) ∈ D(A) for any t, equivalent to (113) being finite, reflects the realistic

property of a finite total number of ‘switches’ at any time. Thus, ifK 6= Kmin,

then an infinite number of state changes in a finite time interval may occur.

Therefore, strictly speaking, only problems withK = Kmin = Kmax can be

physically realistic. However, in many applications, the last condition is disre-

garded and the caseK = Kmin = Kmax is considered to be ‘optimal’.

5.2 The mathematics behind it

5.2.1 Dishonesty

Equations describing the evolution ofu are typically constructed by balancing, for

any statex, the loss ofu(x, t) that is due to the transfer of a part of the population

to other statesx′, and the gain due to the transfer of parts of the population from

other statesx′ to the statex. A general form of such equations is as follows,

∂tu = T0u+ Au+Bu, (114)

whereA is the loss operator,B is the gain operator, andT0 may describe some

transport in the state space (e.g., free streaming or diffusion). The very nature of

the modelling process sketched above requires that the described quantity should

be preserved; that is,u should add up (or integrate) to a constant independent oft,

for instance to 1 ifu is the probability density, or to the initial number of particles

in the second example mentioned above. If this is the case, then the semigroup
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describing the evolution is conservative for positive initial data and is called a

stochastic semigroup.

In many cases, however, the semigroup turns out not to be conservative even

though the modelled physical system should have this property. Markov processes

exhibiting the latter property are well known in probability theory and are referred

to asdishonest, or explosive, Markov processes. In such cases we have a leakage

of the described quantity out of the system that is not accounted for in the mod-

elling processes. This in turn indicates a possibility of the phase transition during

evolution and shows that the model does not provide an adequate description of

the full process. It seems, however, that this phenomenon is much less understood

from the functional-analytic point of view and though a number of scattered re-

sults, often limited to a particular application, can be found in earlier literature,

[31, 45, 6, 7, 27,?, 35, 30], a systematic study has been initiated only recently in

a series of papers, [11, 12, 14, 28, 15], and has yielded strong results.

In many cases, however, in the modelling process a mechanism appears that

allows the amount of the described quantity to decrease. It could be an absorbing

or permeable boundary, or some reaction removing a portion of the quantity from

the system. In such a case we say that the semigroup describing the evolution

is strictly substochastic; that is, the substochasticity of it is not caused by a dis-

honesty of the process. The theory of Markov processes deals with such a case by

introducing an additional state that accounts for the loss, and redefines the process

so that the resulting process is Markovian. However, the loss-functional defining

the leakage from the system carries important information about the evolution, for

example, in the fragmentation models it describes the rate of mass loss due to in-

ternal reactions and therefore plays a special role in the description of the process.

It is thus important that we do not amalgamate it with other states so that we can

keep track of mass loss in the evolution.

Moreover, also for strictly substochastic processes, we can have an analogue

of dishonesty; that is, the described quantity can leak out from the system faster
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than predicted by the loss-functional and thus it is important to separate these two

causes of leakage in the model.

Property of honesty/dishonesty of a semigroup is closely related to the char-

acterisation of the generator of the semigroup. To explain why, let us look at a

simplified situation when (114) withT0 = 0 is supposed to model a conservative

system inX = L1(Ω, dµ); that is, for sufficiently regularu, sayu ∈ D(A),∫
Ω

(A+B)udµ = 0

(the total gain is equal to the total loss, according to our terminology from the

beginning of this section). IfA generates a substochastic semigroup andB is

positive, then by Corollary 10, there is an extensionK of A + B generating a

semigroup of contractions, say(GK(t))t≥0.

Assume now that the semigroup(GK(t))t≥0 is generated by(K,D(K)) =

(A+B,D(A)). Then the solutionu(t) = GK(t)u0, emanating fromu0 ∈ D(K)+,

satisfiesu(t) ∈ D(A)+ and, therefore, because

d

dt
u(t) = Ku(t) = Au(t) +Bu(t),

we obtain that for anyt ≥ 0

d

dt
‖u(t)‖ =

∫
Ω

du(t)

dt
dµ =

∫
Ω

(Au(t) +Bu(t))dµ = 0, (115)

so that‖u(t)‖ = ‖u0‖ for anyt ≥ 0 and the solutions are indeed conservative.

If K = A+B, then foru ∈ D(K) there exists a sequence(un)n∈N of el-

ements ofD(A) such thatun → u and (A + B)un → Ku in X asn → ∞,

thus ∫
Ω

Kudµ = lim
n→∞

∫
Ω

(A+B)undµ = 0. (116)
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This in turn shows again that ifu0 ∈ D(K)+, thenu(t) = G(t)u ∈ D(K)+ for

anyt ≥ 0 and (115) takes the form

d

dt
‖u(t)‖ =

∫
Ω

du(t)

dt
dµ =

∫
Ω

Ku(t)dµ = 0,

and the solutions are conservative as well. ThatK = A+B is also the necessary

condition is not that clear but can be proved, see Theorem 56.

To make the above terminology precise, the semigroup(G(t))t≥0 is said to be

a substochastic semigroupif for any t ≥ 0 andx ≥ 0,G(t)x ≥ 0 and‖G(t)x‖ ≤
‖x‖, and astochastic semigroupif additionally‖G(t)f‖ = ‖f‖ for f ∈ X+.

We consider linear operators inX = L1(Ω, dµ): T ⊂ T0 + A with D(T ) ⊂
D(T0) ∩D(A), andB, that satisfy the assumptions of Corollary 10; that is,

1. (T,D(T )) generates a substochastic semigroup(GT (t))t≥0;

2.D(B) ⊃ D(T ) andBf ≥ 0 for f ∈ D(B)+;

3. for all f ∈ D(T )+, ∫
Ω

(Tf +Bf) dµ = −c(f) ≤ 0. (117)

c is an integral functional; that is, for someς > 0

c(u) =

∫
Ω

ς(x)u(x) dµ′x. (118)

Under these assumptions, Corollary 10, Theorem 50, and other results of

the previous chapter give the existence of a smallest substochastic semigroup

(GK(t))t≥0 generated by an extensionK of the operatorT +B. This semigroup,

for arbitraryf ∈ D(K) andt > 0, satisfies

d

dt
GK(t)f = KGK(t)f. (119)
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The semigroup(GK(t))t≥0 can be obtained as the strong limit inX of semigroups

(Gr(t))t≥0 generated by(T + rB,D(T )) asr ↑ 1−; if f ∈ X+, then the limit is

monotonic. It is also given as the solution to the Duhamel equation (87) and by

the Dyson–Phillips expansion (89). Moreover, the generatorK of (GK(t))t≥0 is

characterised by

(λI −K)−1f =
∞∑

n=0

(λI − T )−1[B(λI − T )−1]nf, f ∈ X, λ > 0. (120)

It is important to distinguish the class of semigroups corresponding toc 6= 0,

as such semigroups cannot be stochastic but their substochasticity is built into the

model and not caused by the dishonesty of it.

Definition 18 A positive semigroup(GK(t))t≥0 generated by an extensionK of

the operatorT +B is said to be strictly substochastic if (117) holds withc 6= 0.

Next we extend the concept of honesty to strictly substochastic semigroups.

Definition 19 We say that a positive semigroup(GK(t))t≥0 (generated by an ex-

tensionK of the operatorT + B) is honest ifc extends toD(K) and for any

0 ≤
◦
f ∈ D(K) the solutionu(t) = GK(t)

◦
f of (119) satisfies

d

dt

∫
Ω

u(t) dµ =
d

dt
‖u(t)‖ = −c (u(t)) . (121)

It can be proved that (121) is equivalent to it ’integrated’ version:

Proposition 11 (GK(t))t≥0 is honest if and only if for anyf ∈ X+ andt ≥ 0,

‖GK(t)f‖ = ‖f‖ − c

 t∫
0

GK(s)fds

 . (122)
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This result allows for the introduction of the defect function

ηf (t) = ‖GK(t)f‖ − ‖f‖+

t∫
0

c (GK(s)f) ds (123)

for f ∈ X+ and t ≥ 0. It follows that ηf is a nonpositive and nonincreasing

function for t ≥ 0. Forλ > 0 we defineLλ = R(λ, T ) = (λI − T )−1. Arguing

as in (103) we obtain that condition (117) is equivalent to

−c(Lλf) = λ‖Lλf‖+ ‖BLλf‖ − ‖f‖, f ∈ X+. (124)

The following theorem is fundamental for analysing honesty of substochastic

semigroups.

Theorem 54 For any fixedλ > 0, there is0 ≤ βλ ∈ X∗ with ‖βλ‖ ≤ 1 such that

for anyf ∈ X+,

λ‖R(λ,K)f‖ = ‖f‖− <βλ, f> − c (R(λ,K)f) . (125)

In particular, c extends to a nonnegative continuous linear functional onD(K),

given again by (118).

Proof. Let us fixf ∈ X+. From (120) and nonnegativity we obtain

λ‖(λI −K)−1f‖ = lim
N→∞

N∑
n=0

λ‖Lλ(BLλ)
nf‖.

By (124) we get

N∑
n=0

λ‖Lλ(BLλ)
nf‖ = ‖f‖ − ‖(BLλ)

N+1f‖ − c

(
N∑

n=0

Lλ(BLλ)
nf

)
.

By non-negativity, the monotone convergence theorem gives

lim
N→∞

c

(
N∑

n=0

Lλ(BLλ)
nf

)
= c(R(λ,K)f) < +∞.
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This shows thatc extend to a finite functional onD(K) which is continuous in

the graph topology. Returning to (??) we see also that‖(BLλ)
N+1f‖ converges

to someβλ(f) ≥ 0 and, by a similar argument,βλ extends to a continuous linear

functional onX with the norm not exceeding 1. �

By taking the Laplace transform ofηf , we obtain

<βλ, f>= −λ
∞∫

0

e−λtηf (t)dt

for f ∈ X+and hence the following result is true

Theorem 55 (GK(t))t≥0 is honest if and only ifβλ ≡ 0 for any (some)λ > 0.

In particular

Corollary 12 If (GK(t))t≥0 is dishonest, then there isf ∈ X+ such that‖GK(t)f‖ <
‖f‖ −

∫ t

0
c (GK(s)f) ds for anyt > 0.

A central result on the characterization of honesty is:

Theorem 56 [8] The semigroup(GK(t))t≥0 is honest if and only if one of the

following holds:

(a)K = T +B.

(b)
∫
Ω

Kudµ ≥ −c(u), u ∈ D(K)+.

Proof. (a) implies honesty as in (116) - properties of the functionalc allow passage

to the limit.

Conversely, if(GK(t))t≥0 is honest, thenβλ ≡ 0 for anyλ > 0, which means,

by the proof of Theorem 54, that

lim
n→∞

(BLλ)
nf = 0.
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Hence the series in (120) converges toR(λ, T +B).

If (GK(t))t≥0 is honest, then first part gives (b) with the equality sign. Con-

versely, foru = R(λ,K)f , f ∈ X+, we have∫
Ω

Kudµ = −‖f‖+ λ‖R(λ,K)f‖ = −c(u)− <βλ, f>,

which implies<βλ, f>≤ 0 for all f ∈ X+, thusβλ = 0. �

Unfortunately, typically we do not knowK and thus condition (c) has a lim-

ited practical value. There are two important theorems providing conditions for

honesty and dishonesty in terms of known operators. The first is based on The-

orem 45 which, combined with Theorem 56, shows that(GK(t))t≥0 is honest if

and only if

1 /∈ σp((BLλ)
∗).

In particular, using the definition ofβλ we see that

<βλ, BR(λ, T )f>= lim
n→∞

‖(BR(λ, T ))n+1f‖ =<βλ, f>,

f ∈ X+, so that

(BR(λ, T ))∗βλ = βλ. (126)

The other set of results is based on the fact that we know at least one extension

of the generatorK, namelyKmax. LetK be any extension ofK.

Theorem 57 [8]

(a) If
∫

Ω
Ku dµ ≥ −c(u) for all u ∈ D(K)+ then the semigroup is honest.

(b) If there existsu ∈ D(K)+ ∩X such that for someλ > 0

(i) λu(x)− [Ku](x) = g(x) ≥ 0, a.e.,

(ii) c(u) is finite and ∫
Ω

Ku dµ < −c(u), (127)
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then the semigroup(GK(t))t≥0 is not honest.

Proof. The statement (a) is obvious from Theorem 56(c) asK containsK. In

practice, however, we are interested to use the smallest possible extension since

taking a too large one could spoil the inequality, [7]. Similarly, (b) uses Theorem

56(c) but here the functionu ∈ D(K), satisfying (127) may fail to belong to

D(K); the other two conditions allow one to prove that there is an element of

D(K) satisfying (127), thus proving dishonesty of(GK(t))t≥0. �

Extension Techniques For further reference we briefly sketch a particularly ef-

fective extension technique. We embedX = L1(Ω, dµ) in the set ofµ-measurable

functions that are defined onΩ and take values in the extended set of real num-

bers, denoted byE; by Ef we denote the subspace ofE consisting of functions

that are finite almost everywhere.E is a lattice with respect to the usual relation:

‘≤ almost everywhere’,X ⊂ Ef ⊂ E with X andEf being sublattices ofE.

Let F ⊂ E be defined by the condition:f ∈ F if and only if for any nonneg-

ative and nondecreasing sequence(fn)n∈N satisfyingsupn∈N fn = |f | we have

supn∈N(I − T )−1fn ∈ X.

We define mappingL : F+ → X+ by

Lf := sup
n∈N

R(1, T )fn, f ∈ F+,

where0 ≤ fn ≤ fn+1 for anyn ∈ N, andsupn∈N fn = fand extend it to a positive

linear operators on the wholeD(B) andF, respectively, Theorem 14.

In most applications(I − T )−1 is an integral operator with positive kernel so

that, by monotone convergence theorem,F coincides is the set ofL1(Ω) functions

for which the integral exists. In the same way we defineB onD(B). It turns out

thatL is one-to-one therefore we can define the operatorT with D(T) = LF ⊂ X
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by

Tu = u− L−1u, (128)

so thatT is an extension ofT . The central theorem of this paragraph reads:

Theorem 58 If (T,D(T )) and(B,D(B)) are operators inX such that(T,D(T ))

generates a substochastic semigroup(GT (t))t≥0 onX, D(B) ⊃ D(T ), Bu ≥ 0

for u ∈ D(B)+, and ∫
Ω

(Tu+Bu) dµ ≤ 0, (129)

for all u ∈ D(T )+, then the extensionK ofA+B, that generates a substochastic

semigroup onX by Corollary 10, is given by

Ku = Tu+ Bu, (130)

with

D(K) = {u ∈ D(T) ∩D(B) : Tu+ Bu ∈ X,
and lim

n→+∞
||(LB)nu|| = 0}.

Using the current notation, we can give a more focused version of Theorem

57(a).

Theorem 59 If for anyg ∈ F+ such that−g + BLg ∈ X, andc(Lg) exists,∫
Ω

Lg dµ+

∫
Ω

(−g + BLg) dµ ≥ −c (Lg) , (131)

thenK = T +B.
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Remark 10 It is worthwhile to reflect on the nature of dishonesty. By definition,

(GK(t))t≥0 is dishonest if it is not honest and therefore for(GK(t))t≥0 to be dis-

honest, it is enough that (122) does not hold for just onef ∈ X+ at one moment of

timet > 0. Hence it makes sense to consider ‘pointwise in space’ honesty and say

that(GK(t))t≥0 is honest along the trajectory{GK(t)f}t≥0 if (122) holds for this

particularf and for allt ≥ 0. Accordingly, such a trajectory is called anhonest

trajectory. Thus(GK(t))t≥0 is honest if and only if each trajectory{GK(t)f}t≥0

is honest. Moreover, honesty can also be considered to be a ‘pointwise in time’

phenomenon. Indeed, ifu(t0) ∈ D(T +B) for somet0 > 0 then, by (116),

d

dt
‖u‖
∣∣∣∣
t=t0

= −c(u(t0))

and therefore we can say that the trajectory{GK(t)f}t≥0 is honest over a time

intervalI if and only ifGK(t)f ∈ D(T +B) for t ∈ I.

In other words,(GK(t))t≥0 is dishonest along the whole trajectory{GK(t)f}t≥0

if and only if this trajectory, starting fromf ∈ D(T +B), leavesD(T +B)

immediately and stays inD(K) \D(T +B) for all t > 0.

In general, our theory cannot determine, in general, whether a given system

(GK(t))t≥0 can be dishonest along some trajectories and honest along the others.

Using specific properties of birth-and-death and fragmentation models, however,

we can show that dishonesty in these models is spatially universal. That is, if it

occurs along one trajectory, it must occur along any other; see Theorem 65.

Unfortunately, much less can be said about how dishonest trajectories behave

in time. One of the reasons for this is that our theory is based on the Laplace

transform approach which gives, in some sense, time averages of solutions which

provide little information about the properties which are local in time.
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5.2.2 Multiple solutions

Let us return to the general Cauchy problem (42), (43). IfA is the generator

of a semigroup, then the problem is always uniquely solvable. Hence, multiple

solution only can occur if the original operator is not a generator.

Assume that, for a givenu0, (42), (43) has two solutions. Then their difference

is again a solution of (42) but corresponding to the null initial condition – it is

called anul-solution.

Theorem 60 [29, Theorem 23.7.1] IfA is a closed operator whose point spec-

trum is not dense in any right half-plane, then for eachu0 ∈ X the Cauchy

problem of Definition 12 has at most one exponentially bounded solution.

Proof. The proof essentially follows by taking the Laplace transform of both sides

of (42) and some careful manipulation to ensure convergence. �

A useful reformulation of the previous theorem reads as follows:

Theorem 61 [29, Theorem 23.7.2] LetA be a closed operator. The Cauchy prob-

lem (42), (43) has an exponentially bounded nul-solution of type≤ ω if and only

if the eigenvalue problem

Ay(λ) = λy(λ) (132)

has a solutiony(λ) 6= 0 that is a bounded and holomorphic function ofλ in each

half-plane<λ ≥ ω + ε, ε > 0.

Now we investigate a relation between Cauchy problems (42), (43) and (47), (48).

Let (A,D(A)) be the generator of aC0-semigroup(G(t))t≥0 on a Banach space

X. To simplify notation we assume that(G(t))t≥0 is a semigroup of contractions,

hence{λ; Reλ > 0} ⊂ ρ(A). Let us further assume that there exists an extension

A of A defined on the domainD(A). We have the following basic result.
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Lemma 4 Under the above assumptions, for anyλ withReλ > 0,

D(A) = D(A)⊕Ker(λI −A). (133)

The next corollary links Theorem 61 with the above lemma.

Corollary 13 If D(A)\D(A) 6= ∅, thenσp(A) ⊇ {λ ∈ C; Reλ > 0}. Moreover,

there exists a holomorphic (in the norm ofX) function{λ ∈ C; Reλ > 0} 3 λ→
eλ such that for anyλ withReλ > 0, eλ ∈ Ker(λI −A), which is also bounded

in any closed half-plane,{λ ∈ C; Reλ ≥ γ > 0}.

An important observation is that analogous considerations can be carried also for

mild (or integral) solutions of (42), (43), defined as for the semigroup: We say

thatu is a mild solution of (42), (43) ifu ∈ C([0,∞), X),
∫ t

0
u(s)ds ∈ D(A) for

anyt > 0, and

u(t) =
◦
u +A

t∫
0

u(s)ds, t > 0. (134)

For mild solution we have the following counterpart of Theorem 61.

Corollary 14 LetA be a closed operator. If (42), (43) has a mild nul-solution of

type≤ ω, then the characteristic equation

Ay(λ) = λy(λ) (135)

has a solutiony(λ) 6= 0, which is a bounded and holomorphic function ofλ in

each half-planeReλ ≥ ω + ε, ε > 0. Again,y(λ) in (135) can be taken as

y(λ) =

∞∫
0

e−λtu(t)dt. (136)

This observation allows to check uniqueness only for continuous solutions of the

integral version of the problem, which is technically simpler.
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5.3 Applications to birth-and-death type problems

Let us recall that here we deal with the system

u′0 = −a0u0 + d1u1,
...

u′n = −anun + dn+1un+1 + bn−1un−1,
... . (137)

We assume that the rates of change are given and are denoted bydn andbn for

changesn→ n− 1 andn→ n+ 1, respectively. In general, we can also include

a mechanism that changes a number of objects at the staten by, for example,

removing them from the environment or, otherwise, introducing them. The rate

of this mechanism is denoted byc = (cn)n∈N and in such a case we havecn =

bn + dn − an. The classical application of this system comes from population

theory, where it is a particular case of a Kolmogorov system; in this caseun is the

probability that the described population consists ofn individuals and its state can

change by either the death or birth of an individual thus moving the population

to the staten − 1 or n + 1, respectively, hence the name birth-and-death system.

The classical birth-and-death system is formally conservative; this is equivalent

to an = dn + bn. However, recently a number of other important applications

have emerged. For example, [33], we can consider an ensemble of cancer cells

structured by the number of copies of a drug-resistant gene they contain. Here,

the number of cells withn copies of the gene can change due to mutations, but

the cells also undergo division without changing the number of genes in their

offspring which is modelled by a nonzero vectorc. Finally, system (137) can

be thought of as a simplified kinetic system consisting of particles labelled by

internal energyn and interacting inelastically with the surrounding matter where

in each interaction they can either gain or lose a unit (quantum) of energy. Some

particles can decay without a trace or be removed from the system leading again

to a nonzeroc.
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The most common setting for birth-and-death problems is the spacel1. Here

we extend it to otherlp spaces to demonstrate the applicability of Theorem 50. The

existence results of this section forp > 1 can also be proved using Proposition

10; see [19].

5.3.1 Existence Results

Let us recall that the boldface letters denote sequences, for example,u = (u0, u1, . . .).

We assume that the sequencesd, b, anda are nonnegative withb−1 = d0.

By K we denote the matrix of coefficients of the right-hand side of (137) and,

without causing any misunderstanding, the formal operator in the spacel of all

sequences, acting as

(Ku)n = bn−1un−1 − anun + dn+1un+1.

In the same way, we defineA andB as(Au)n = −anun and(Bu)n = bn−1un−1+

dn+1un+1, respectively.

By Kp we denote the maximal realization ofK in lp, p ∈ [1,∞); that is,

Kpu = Ku

on

D(Kp) = {u ∈ lp; Ku ∈ lp}. (138)

It is easy to check that he maximal operatorKp is closed for anyp ∈ [1,∞).

Next, define the operatorAp by restrictingA to

D(Ap) = {u ∈ lp; Au ∈ lp} = {u ∈ lp;
∞∑

n=0

ap
n|un|p < +∞}.

Again, it is standard that(Ap, D(Ap)) generates a semigroup of contractions inlp.

Using Theorem 50 we can prove the following result.
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Theorem 62 Assume that sequencesb andd are nondecreasing and there isα ∈
[0, 1] such that for alln,

0 ≤ bn ≤ αan, 0 ≤ dn+1 ≤ (1− α)an. (139)

Then there is an extensionKp of the operator(Ap + Bp, D(Ap)), whereBp =

B|D(Ap), which generates a positive semigroup of contractions inlp, p ∈ (1,∞).

Furthermore, we can prove thatB is closed and thusBp is closable. Then Theorem

48 implies

Kp = Ap +Bp

providedp ∈ (1,∞). The situation inl1 is completely different.

Corollary 15 Letp = 1. Assume that sequencesb andd are nonnegative and

an ≥ (bn + dn). (140)

Then there is an extensionK1 of the operator(A1 + B1, D(A1)), whereB1 =

B|D(A1), which generates a positive semigroup of contractions inl1.

Proof. Using the definition ofD(A1) we see, from (140), that0 ≤ bn ≤ an and

0 ≤ dn ≤ an for n ∈ N. Hence,A1 is well defined and condition (117) takes the

form
∞∑

n=0

((A1 +B1)u)n = −
∞∑

n=0

anun +
∞∑

n=0

bn−1un−1 +
∞∑

n=0

dn+1un+1

= −
∞∑

n=0

anun +
∞∑

n=0

bnun +
∞∑

n=0

dnun ≤ 0,

where we used the conventionb−1 = d0 = 0. �

We have also the following result.

Theorem 63 For anyp ∈ [1,∞) we haveKp ⊂ Kp.

Forp = 1, it is immediate consequence of Theorem 58.
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5.3.2 Birth-and-death problem – honesty results

We now find whether the constructed semigroup is honest (conservative) or dis-

honest by means of the extension techniques of Subsection 5.2.1. In the case of

matrix operators it is particularly easy to give explicit descriptions of the extended

operators and related spaces. In particular,Ef = m, the set of bounded sequences

and, for instance,

Lu =

(
un

1 + bn + dn

)
n∈N

onF = {u ∈ m; Lu ∈ l1}, Au = ((bn + dn)un)n∈N onD(A) = LF, and similarly

for the other operators and spaces introduced in Subsection 5.2.1.

Recall that byK we denoted the matrix of coefficients and, at the same time,

the formal operator acting onm given by multiplication byK. It is easy to see

that the maximal operatorK1 (see (138)) is precisely

K1 = K = A + B. (141)

Note too that foru ∈ D(K), the integral
∫

Ω
Kudµ, which plays an essential role

in a number of theorems (e.g., Theorems 56 and 57), is given here by

∞∑
n=0

(−(bn + dn)un + bn−1un−1 + dn+1un+1)

= lim
n→+∞

n∑
k=0

(−(bk + dk)uk + bk−1uk−1 + dk+1uk+1)

= lim
n→+∞

(−bnun + dn+1un+1), (142)

where the limit exists asu ∈ D(K) yields the convergence of the series.

In the theorems concerning honesty and maximality we assume, to avoid tech-

nicalities, thatbn > 0 for n ≥ 0 anddn > 0 for n ≥ 1.
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Theorem 64 K = A+B if and only if

∞∑
n=0

1

bn

(
∞∑
i=0

i∏
j=1

dn+j

bn+j

)
= +∞ (143)

(where we put
∏0

j=1 = 1).

Proof.To prove honesty, we use Theorem 59. Thus, by (142) it suffices to prove

that for anyu ∈ D(K)+

lim
n→+∞

(−bnun + dn+1un+1) ≥ 0,

where we know that the sequence above converges. If we assume the contrary,

that for some0 ≤ u ∈ D(K), then limit in (142) is negative so that there exists

b > 0 such that

−bnun + dn+1un+1 ≤ −b (144)

for all n ≥ n0 with large enoughn0. Using (144) as a recurrence we get

un ≥
b

bn

(
∞∑
i=0

i∏
j=1

dn+j

bn+j

)
and, if the assumption (143) is satisfied, we obtain

∑∞
n=0un = +∞ which contra-

dicts the assumption of the summability of(un)n∈N.

The proof of necessity is an application of Theorem 57. If the series in (143)

is convergent, then, by some algebra,

un =
b

b0

n−1∏
i=0

bi
di+1

(
∞∑

l=n

l∏
i=1

di

bi

)
.

is summable and satisfies

−b = −bnun + dn+1un+1, n ≥ 0
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so that assumption (iii) of Theorem 57 is satisfied. By construction,Au+Bu ∈ l1,
so thatu ∈ D(K). We must show thatg = u − (Au + Bu) ≥ 0. By direct

calculations, we obtaing0 = u0 + b0u0 − d1u1 = u0 + b and forn > 0,

gn = un + bnun + dnun − bn−1un−1 − dn+1un+1 = un,

so that0 ≤ g ∈ l1. Hence assumption (i) of Theorem 57 is satisfied. �

5.3.3 Universality of Dishonesty

Theorem 65 If (GK(t))t≥0 is dishonest, that is, if

∞∑
n=0

1

bn

(
∞∑
i=0

i∏
j=1

dn+j

bn+j

)
< +∞, (145)

then for eachu0 ∈ X+ there ist0 ≥ 0 such that‖GK(t)u0‖ < ‖u0‖ for all t > t0.

Proof. By Theorem 55,(GK(t))t≥0 is dishonest if and only if the functionalβλ,

defined in Theorem 54, is not identically zero. The defect function along the

trajectory originating atu0, which in our case is given byηu0(t) = ‖GK(t)u0‖ −
‖u0‖, is related toβλ by

∞∫
0

e−λtηu0(t)dt = −1

λ
<βλ,u0> .

Clearly,λ is inessential. Puttingβλ = β = (βn)n∈N with βn ≥ 0, we see that for

universality of dishonesty we must haveβn > 0 for anyn ≥ 0. On the other hand,

by (126),βλ is an eigenvector of(BR(λ,A))∗. Any eigenvector(φn)n∈N satisfies

b0
1 + b0

φ1 = φ0,

... ,
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dn

1 + bn + dn

φn−1 +
bn

1 + bn + dn

φn+1 = φn,

... ,

and, becauseb0/(1 + b0) < 1, we haveφ1 > φ0. Rearranging the terms innth

equation,

φn+1 =

(
1 +

1

bn

)
φn +

dn

bn
(φn − φn−1).

Henceφn+1 > φn wheneverφn ≥ φn−1 we end the proof by induction. �

5.3.4 Maximality of the Generator

Let us recall that the relation between the generatorK and its extensionsK andK
is given in (141). In particular,K is the maximal operator.

Proposition 12 If (GK(t))t≥0 is a substochastic semigroup generated byK and

for some0 ≤ h ∈ D(K), ∫
Ω

Khdµ > 0, (146)

thenK 6= K; that is, the generator is not maximal.

Conversely, assume that if0 6= u ∈ l solves the formal equation

Ku = λu, λ > 0, (147)

then eitheru ≥ 0 or u ≤ 0, and ∫
Ω

Khdµ = 0, (148)

for anyh ∈ D(K). ThenK = K; that is, the generator is the maximal operator.
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Proof. It follows that if h ∈ D(K), then
∫

Ω
Khdµ = 0. BecauseK ⊂ K,

(146) shows thath /∈ D(K).

If K 6= K then, by Corollary 13, we haveN(λI − K)+ 6= ∅. Because (147) is

linear, then the assumption ascertains the existence of0 6= h ∈ N(λI − K)+ and

for such anh ∫
Ω

Khdµ = λ

∫
Ω

hdµ 6= 0, (149)

contradicting (148). �

To be able to use this result, we have the following lemma.

Lemma 5 Let λ > 0 be fixed. Any solution to (147) is either nonnegative or

nonpositive.

On the basis of the above lemma, we have:

Theorem 66 K 6= K if and only if

∞∑
n=1

1

dn

n−1∏
j=1

bj
dj

(
n−1∑
i=0

i∏
j=1

di

bi

)
< +∞, (150)

where, as before,
∏0

j=1 = 1.

Proof. By Lemma 5 and Proposition 12,K 6= K if and only if for each0 ≤
(un)n∈N ∈ l1, such that(−(bn + dn)un + bn−1un−1 + dn+1un+1n)n∈N ∈ l1, we

have

I =
∞∑

n=0

(−(bn + dn)un + bn−1un−1 + dn+1un+1) > 0.

and, similarly to the proof of Theorem 64 and (144) we need to investigate the

behaviour of the sequence(rn)n∈N defined as

rn = −bnun + dn+1un+1, n ≥ 0, (151)
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or,solving forun, for n ≥ 1,

un =
1

dn

n−1∑
i=0

(
ri

n−1−i∏
j=1

bn−j

dn−j

)
+
u0b0
dn

n−1∏
j=1

bj
dj

. (152)

If K 6= K, then there is a nonnegative(un)n∈N ∈ l1 for whichI = limn→∞ rn >

0 and, by some algebra, it is enough to consider a nonnegative sequence(un)n∈N ∈
D(K) with the associated sequence(rn)n∈N satisfyinginfn∈N rn = r > 0. Then it

can be proved that the series in (150) is convergent.

To prove the converse, defineun by (151) with arbitrary(rn)n∈N converging

to I > 0 (e.g., we may takern = r for all n for a constant positiver). By (150)

(un)n∈N ∈ l1, so that(un)n∈N ∈ D(K) and becauseI > 0, the thesis follows by

(146). �

5.3.5 Examples

We provide a few examples showing that all possible cases of relations between

the generator and maximal and minimal operators can be realized.

Proposition 13 If both sequences(b−1
n )n∈N, (d

−1
n )n∈N /∈ l1, thenK = A+B =

K. In particular, this is true for the standard birth-and-death problem of popula-

tion theory where the coefficients are affine functions ofn.

Proof. Expanding (150) we get, for a fixedn,

1

dn

(
1 +

bn−1

dn−1

+ · · ·+ bn−1 . . . b1
dn−1 . . . d1

)
≥ 1

dn

.

Similarly, expanding (143), we get

1

bn

(
1 +

dn+1

bn+1

· · ·+
)
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which gives divergence of both series. �

The proofs of the following results are obtained in a similar way.

Proposition 14 If (d−1
n )n∈N ∈ l1 and

lim
n→∞

bn
dn

= q < 1, (153)

thenK = A+B 6= K.

Proposition 15 If the sequence(dn)n∈N is of polynomial growth:dn = O(nβ) for

someβ asn→∞, (b−1
n )n∈N ∈ l1 and

lim
n→∞

bn
dn

= q > 1, (154)

thenA+B  K = K.

Proposition 16 There are sequences(bn)n∈N and (dn)n∈N for whichA+B  
K  K.

Proof. Takebn = 2 · 3n anddn = 3n. �

5.4 Chaos in population theory

We consider a population of cancer cells characterized by different levels of drug

resistance. The cells belonging to 0–th subpopulation are sensitive to antineoplas-

tic drugs. The cells ofn–th subpopulation,n > 0, are resistant with the level of

resistance increasing withn. Each subpopulation contains cells characterized by

a number of copies of a drug resistance gene. The more copies of the gene exist,
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the more resistant the cell, with the understanding that it can survive under higher

concentration of the drug. Since the number of gene copies can be very large,

we use a model with an infinite number of cell subpopulations. We consider a

gene amplification – deamplification process characterized by two components:

the conservative one and the proliferative one.

The conservative component of the process describes the mutations of cells

modelled as in standard birth-and-death process. The proliferative component of

the process is related to the assumption that the moment of death represents the

moment of cell division and that the average life–span is given by the coefficient

λn for then–subpopulation (n ≥ 0). This model leads to the infinite system of

ordinary differential equations

df0

dt
= −a0f0 + d1f1, (155)

...
...

dfn

dt
= −anfn + bn−1fn−1 + dn+1fn+1, n ≥ 1,

where we denoteda0 = −λ0 + b0 andan = −λn + bn + dn for n ∈ N. We

denote byf = {fn(t)}n≥0 the distribution function and byL the infinite matrix of

the coefficients on the right-hand side of (155). The proper Banach space for the

process defined by Eq. (155) isl1, where the norm

‖f‖1 =
∞∑

n=0

fn , (156)

of any elementf in the positive conel1+: l1+ = {f ∈ l1 ; fn ≥ 0 n =

0, 1, 2 . . . } represents the total number of cells. For the sake of completeness we

shall consider also the Banach spaceslp, 1 ≤ p <∞, andc0 (the space sequences

converging to0), with natural norms.

In [13], Eqn. (155) is considered under the assumption that the coefficientsan,

bn (for n ∈ N0), dn (for n ∈ N) are nonnegative and

(A1) for somea ≥ 0, an = a+ αn, n ∈ N0, with lim
n→∞

αn = 0,
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(A2) for somed > 0 lim
n→∞

dn = d

(A3) lim sup
n→∞

bn = 0.

Let Lp, p ∈ [1,∞[∪{0} denote the operator realization ofL in lp andc0, re-

spectively. The operatorsLp are bounded, hence they generate dynamical systems

(Tp(t))t≥0 in lp andc0, respectively.

Theorem 67 Let the assumptions (A1), (A2) and (A3) be satisfied. There isq > 0

such that if|αn| ≤ dqn+1, |bndn−1| ≤ d2q2n+4 and a < d, then the semigroup

generated byLp is chaotic in anylp, 1 ≤ p <∞, and inc0.

Consider the system transposed to (155)

df0

dt
= −a0f0 + b0f1, (157)

dfn

dt
= −anfn + dnfn−1 + bnfn+1, n ∈ N.

Using the fact thatc∗0 = l1 and(lp)∗ = lr, 1/p+1/r = 1, by Theorem 38, if (157)

was chaotic in any subspace, then the codimension of the span of all eigenvectors

of the operator in (155) in respective space would be finite. Since this is not true,

we have

Corollary 16 Suppose that the sequences(an), (bn) and(dn) are as in Theorem

67. Then the semigroup generated by (157) is chaotic in no subspace oflp, 1 ≤
p <∞, or of c0.

Theorem 67 ensures the topological chaos for large deamplification (“death”) rates

and small amplification (“birth”) rates, i.e. for the process which is subcritical. On

the contrary, chaos will not appear in processes with small deamplification rates

and possibly large amplification rates. The assumptions of Theorem 67 are often
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not realistic – in most standard applications the coefficients depend in an affine

way onn. This creates numerous problems starting from the generation of the

semigroup through the construction of eigenvectors to their density inlp.

We adopt the following assumption.

Assumption AC There exists N0 ≥ 1 such that

an = an+ α ,

dn+1 = dn+ δ ,

bn−1 = bn+ β , n ≥ N0,

 (158)

with a = −(b+ d) , b , d ≥ 0 , α, β, δ ∈ R.

In this case the proliferation rate does not depend onn for largen, and equals

γ = α+ β + δ + b− d.

Recall thatL is the infinite matrix of coefficients. We define

D(Lmax) = {f ∈ lp; Lf ∈ lp}

andLmax = L|D(Lmax).

Theorem 68 [18] Suppose that AssumptionAC is satisfied andp ∈ [1; +∞).

ThenLmax is a unique realization ofL that generates aC0-semigroup inlp.

The importance of the identification ofLmax as the generator stems from the fact

thatlp-solutions of the infinite system

λf0 = −a0f0 + d1f1, (159)
...

...

λfn = −anfn + bn−1fn−1 + dn+1fn+1, n ≥ 1,

are the eigenvectors of the generator.
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Proposition 17 Let Assumption AC be satisfied,d > b,N ′
0 := max{n ≥ 0 : dn =

0}. For anyλ ∈ C there exists a unique sequencef(λ) = (fn(λ))n≥0 satisfying

(159) and the initial conditionsfn(λ) = 0 for n < N ′
0, fN ′

0
(λ) = 1. Moreover,

(i) fn(λ) is a polynomial inλ of degreen−N ′
0 for n ≥ N ′

0;

(ii) for anyλ0 ∈ C andε > 0, there existsK > 0 such that if|λ − λ0| < ε and

n ≥ N ′
0 + 1, then

|fn(λ)| ≤ Kn−
α+β+δ−<λ

d−b . (160)

Denote byΠp(b, d, α, β, δ) the open left half-plane defined by

Πp(b, d, α, β, δ) = {λ ∈ C : <λ < γp} , (161)

where

γp = α+ β + δ − d− b

p
. (162)

Corollary 17 Consider the operatorLmax acting in the spacelp, 1 ≤ p < ∞.

If AssumptionAC holds withd > b, thenΠp(b, d, α, β, δ) ⊂ σp(Lmax). More-

over, for anyλ ∈ Πp(b, d, α, β, δ) the sequencef(λ), given by Proposition 17,

is an eigenvector ofLmax for the eigenvalueλ, and the vector-valued function

Πp(b, d, α, β, δ) 3 λ→ f(λ) ∈ lp is analytic.

Theorem 69 Suppose that1 ≤ p <∞ and that AssumptionAC holds withd > b

andγp > 0. Then theC0-semigroup generated byLmax in lp is sub-chaotic.

Theorem 70 Suppose that Assumption AC is satisfied,p ∈ [1; +∞), and either

of two cases hold:

(i) b > d,

(ii) dm0 = 0,

for somem0 ≥ 1. Then theC0-semigroup generated byLmax is not topologically

chaotic.
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5.4.1 Meaning of chaos

In most biological applications only non-negative solutions make sense (the solu-

tion should stay in the non–negative cone ofl1) and it is only fair to note that the

chaotic properties discussed here cannot occur for such solutions. In fact, for sys-

tems with strictly positive proliferation, thel1 norm of a solution may only grow

and hence the solution cannot wander.

On the other hand, as we are dealing with linear systems we may wish to

consider the differences between two physical (i.e. non–negative) solutions and

such a difference certainly need not be non–negative. In fact, we have

Proposition 18 LetX be a Banach lattice. If(G(t))t≥0 is chaotic (subchaotic)

in X, then for anyε > 0 there existx1, x2 ∈ X+ such that‖x1 − x2‖ < ε and

t→ G(t)x1 −G(t)x2 is dense in the space of chaoticity of(G(t))t≥0.

Proof. LetXch be a space of chaoticity of(G(t))t≥0. There is a dense trajectory

in Xch so, in particular, for anyε > 0 there isz ∈ Xch such that‖z‖ < ε and

{G(t)z}t≥0 is dense inXch (since any tail of a dense trajectory is dense). Since

the positive cone in a Banach lattice is generating, there arex1, x2 ∈ X+ such that

z = x1 − x2. From linearity,G(t)z = G(t)x1 −G(t)x2. �

6 Asynchronous growth

The analysis in Subsection 4.4 gives some information about how fast a semi-

group can grow but does not yield any clue as to whether there are any long term

patterns of the behaviour of the semigroup. Some such patterns were discussed in

Subsection 1.2. In many cases, as in the finite dimensional case, such patterns are
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associated with the eigenvalues with largest real value. This section is devoted to

existence of such eigenvalues.

The first step in this direction is to ensure existence decomposition of the spec-

trum of the semigroup into isolated point part and the rest which, hopefully, will

have real parts smaller that the point part. This of course occurs if the semigroup

is compact (or even eventually compact) and, more generally, when its essential

spectrum radius is strictly smaller that the spectral radius.

6.1 Essential growth bound

The concept of essential spectrum provides more insight into the long time be-

haviour of semigroups. SincerΦ(G(t)) is defined through the norm in the quo-

tient space, we can define the Fredholm growth rate of the semigroup using the

Fredholm norm‖ · ‖Φ and prove in the same way as for the growth rate that

ωΦ(A) = lim
t→∞

1

t
log ‖G(t)‖φ (163)

and

etωΦ(A) = rΦ(G(t))

However, using (29) we can replacerΦ by ress and callωΦ the essential growth

rate and denote it byωe. This shows that at the level of spectral radii and growth

bounds the distinction between Fredholm and essential spectra (and thus between

approaches of [38, 26] and [21, 5]) disappears.

Clearly,ωe(G) ≤ ω0(G). If ωe(G) < ω0(G), then there is an eigenvalue of

(G(t))t≥0 satisfying

|λ| = eω0(G)t

hence, by Theorem 23(2), there isλ1 ∈ σp(A) such that<λ1 = ω0. Sinces(A) ≤
ω0(G) we obtain the important result

ω0(G) = max{ωe(G), s(A)} (164)
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We shall look more closely into implications ofωe(G) < ω0(G). In this case

s(A) = ω0(G).

Theorem 71 Supposeωe(G) < ω0(G). Thenσper,s(A) 6= ∅ and is finite. More-

over,X can be decomposed in a unique way into a sumN
⊕

S of two closed

G(t)-invariant subspaces with one of them (sayN ) of finite dimension. Further-

more,σ(A|N) = σper,s(A) andω0(G|S) < ω0(G)

Proof. First we note that, by (164) and the definition ofs(A), for any γ ∈
(ωe(G), ω0(G)] there isλ ∈ σ(A) \ σe(A) (and alsoλ ∈ σ(A) \ σΦ(A) with

γ ≤ <λ ≤ ω0(G). We will show that for anyγ > ωe(G) there are only

finitely many λ satisfying<λ ≥ γ. To the contrary, assume that there is an

infinite sequence(λn)n∈N satisfyingωe(G) < γ ≤ <λn ≤ ω0(G). Since each

λn ∈ σp(A) thus, by the Spectral Mapping Theorem for the point spectrum,

µn := etλn ∈ σp(G(t)) for anyt ≥ 0. Assume that for somet0 > 0 the sequence

(µn)n∈N has an accumulation point. By the definition of the essential spectrum,

this impliesre(G(t0)) ≥ eγt0 but thenωe(G) ≥ γ, which is a contradiction. So,

none of the sequences(etλn)n∈N has an accumulation point hence, being bounded,

must be finite. Fix againt > 0. There may be an infinite sequence ofλn (denoted

again by(λn)n∈N) satisfyingµ = etλn for eachn, see (70). The eigenspaces ofA

corresponding to distinctλn are linearly independent. But then their direct sum is

infinite dimensional and corresponds to the eigenspace ofG(t) corresponding to

µ contradicting again the definition of the essential spectrum. The first two state-

ments of the lemma follow now by specifyingγ = s(A). The other two can be

obtained by definingN as the sum ofKer∞(λI − A) overλ ∈ σper,s(A) andS as

the intersection ofIm ((λI −A)k) overk ∈ N andλ ∈ σper,s(A) (or equivalently,

using the fact thatσper,s(A) is isolated inσ(A) and compact, by taking the spectral

projection corresponding toσper,s(A) and its complement. �

Remark 11 Using the terminology of Subsection 1.2, we see that EAEG holds if

ωe(G) < ω0(G). Then, MAEG holds if, moreover,σper,s(A) consists of a single
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eigenvalue. Finally, AEG holds if, in addition, this eigenvalue has multiplicity

one. In fact, these conditions are necessary and sufficient, [5].

It seems that to make a progress towards MAEG and AEG, we have to assume

that the semigroup at hand is positive.

6.2 Peripheral spectrum of positive semigroups

The main result of this subsection is

Theorem 72 If (G(t))t≥0 is a positive semigroup on a Banach latticeX gener-

ated byA such thats(A) > −∞ is a pole of the resolventR(λ,A). Thenσper,s(A)

is additively cyclic.

The proof of this result is quite technical and draws on numerous results from the

theory of positive operators on Banach lattices and we shall refrain from giving

it in detail. It is, however, worthwhile to discuss a few salient point of the proof

which use the relations between Banach lattices and the space of continuous func-

tionC(K), given by the Kakutani-Krein theorem (Theorem 13).

We recall the signum operatorSu (see Example 17)) and define

uk = Sk
u|u|, k ∈ Z

whereu−1 := ū.

The crucial result is the following lemma.

Lemma 6 If T andR are two bounded operators satisfying|Rx| ≤ T |x|, x ∈ X,

andRu = u andT |u| = |u| for u ∈ X such that|u| is a quasi-interior point (see

Lemma 2), thenT = S−1
u RSu.
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Proof. The proof uses the fact that, asu is quasi-interior,X can be identified with

a space of continuous functions. Details are given in [21, Lemmas 8.8-9].

To illustrate this result we shall discuss two other results which are related to

Theorem 72 but which are relatively simpler.

Proposition 19 If L is a positive operator on a Banach latticeX (and thus bounded)

and suppose thatLu = αu andL|u| = |u| for someu ∈ X andα ∈ C with

|α| = 1. Then, for everyk ∈ Z we haveLuk = αkuk.

Proof. SinceL is bounded, it leavesXu invariant. DefineT = L|Xu
andR =

α−1L. ThenTu = Ru, T |u| = L|u| = |u|, and|Tx| = |Lx| = |Rx| for x ∈ X|u|.

Hence,T = S−1
u RSu = α−1S−1

u TSu. Iteration yieldsT = α−kS−k
u TSk

u. Hence

Tu−k = TS−k
u |u| = α−kS−k

u T |u| = α−kS−k
u |u| = α−ku−k, k ∈ Z,

which gives the thesis. �

Corollary 18 Let (G(t))t≥0 be a positive semigroup on a Banach lattice gener-

ated byA, and suppose that for someu ∈ X andα, β ∈ R we have

Au = (α+ iβ)u, A|u| = α|u| (165)

Then

Aun = (α+ inβ)un. n ∈ Z (166)

Furthermore, if|u| is a quasi-interior point ofX, thenSuD(A) = D(A) and

A+ iβI = S−1
u ASu.

Proof. We may assumeα = 0. Eq. (165) impliesG(t)|u| = |u| andG(t)u =

eiβtu, t ≥ 0, by Theorem 23 (2). Thus, by Proposition 19, we haveG(t)un =

einβun which, again by Theorem 23, is equivalent toAun = iβnun.
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If |u| is a quasi-interior point ofX+ then in the proof of Proposition 19 we

haveX = X|u| so thatT = L = G(t) andR = e−iβtG(t). Thus yieldseiβtG(t) =

S−1
u G(t)Su for all t ≥ 0 which impliesSuD(A) = D(A) (by Sue

iβtG(t) =

G(t)Su) andA+ iβI = S−1
u ASu. �

The above result allows to give a simple proof a theorem on cyclicity of point

spectrum in Banach lattices with strictly monotonic norm:0 ≤ f < g implies

‖f‖ < ‖g‖. In particular, the spacesLp have this property.

Theorem 73 SupposeX is a Banach lattice with strictly monotone norm. If

(G(t))t≥0 is a positive contractive semigroup withs(A) = 0, thenσper,s(A)∩σp(A)

is imaginary additively cyclic.

Proof. Suppose thatAu = iβu for someβ ∈ R, u ∈ X. ThenG(t)u = eiβtu

and|u| ≤ G(t)|u|. Hence‖u‖ ≤ ‖G(t)|u|‖ ≤ ‖u‖ since(G(t))t≥0 is contractive.

Hence‖G(t)|u|‖ = ‖u‖ and, by strict monotonicity of the norm,G(t)|u| = |0|,
which impliesA|u| = 0. Using Corollary 18 we obtain the thesis. �

Corollary 19 If assumptions of Theorem 73 are satisfied andωe(G) < ω0(G),

thenσper,s(A) = {s(A)}. Thus,(G(t))t≥0 has MAEG.

Proof. Sinceωe(G) < ω0(G), the peripheral spectrumσper,s(A) is the point spec-

trum and, by Theorem 71, must be finite and non-empty. The only way for it to

be additively cyclic is to consist of one point. �

In general case this result will follow from Theorem 72 whose proof is much

more involved. After this interlude let us return to the discussion of Theorem 72.

Proof. We may assumes(A) = 0. Let us start with the case thats(A) = 0

is a pole ofR(λ,A) of order 1. Assume thatiν ∈ σper,s(A). Using the Spectral
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Mapping Theorem for the resolvent and (13) we find that for anyλ ∈ ρ(A) we

have

(λ− iν)−1 ∈ ∂σ(R(λ,A)) ⊂ σa(R(λ,A)).

The problem we face is that(λ − iν)−1 is an approximate eigenvalue. Using

considerations of Paragraph 2.2.2, we embed the problem into the ultrapowerX̂

so that the approximate eigenvalues become eigenvalues of the extended opera-

tor. The snag is that the extended resolventR̂(λ) := R̂(λ,A) is no longer the

resolvent of a densely defined operator ifA is unbounded. It is however, a pseu-

doresolvent with the same domain of definition, which satisfies the same estimate

as the resolvent of the generator of a positive semigroup (Theorem 42 (iii)):

|R̂(λ)x̂| ≤ R̂(<λ)|x̂|, x ∈ X,<λ > 0. (167)

By Theorem 5,(λ − iν)−1 is an eigenvalue and a pole of̂R(λ) of the same

order. Fixingλ ∈ C with <λ > 0, there isû satisfying

R̂(λ)û = (λ− iν)−1û

and, by properties of pseudo-resolvents, the above equation is satisfied for allλ

with <λ > 0. Summarizing, we have

R̂(λ)û = (λ− iν)−1û, <λ > 0,

λR̂(λ)|û| ≥ |û|, λ > 0, (168)

where the second relation follows from the first and (167). Now, ifû were a quasi-

interior point and if we had equality in the second relation, then we would be in

the position to use Lemma 6 withR = R̂(λ) andT = R(<λ) to get

λR̂(λ) = S−1
u λR̂(λ+ iν)Su

for all λ, <λ > 0 (by analytic continuation).

Replacingλ by λ+ iν on the right hand side and iterating we obtain

λR̂(λ) = S−k
u λR̂(λ+ ikν)Sk

u
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and, applying this to|û|, we obtain

S−k
u λR̂(λ+ ikν)Sk

u|u| = S−k
u λR̂(λ+ ikν)uk

= λR̂(λ)|u| = |u|, <λ > 0, k ∈ Z,

or

λR̂(λ+ ikν)uk = uk

so that the peripheral spectrum ofR̂(λ) and thus of the generator would be cyclic.

As we noted, there are two snags. One is thatû is not necessarily a quasi-

interior point. This, however, can be remedied by restricting considerations to

the closed idealXu. The second, that we have inequality rather than equality in

the second relation of (168). This is a more serious problem, though a solution

is similar if much more technically involved. Since|û| > 0, there is a positive

functional such that< |û|, φ >.

As we noted, sinceλ = 0 is a first order pole ofR(λ,A), it is also a first order

pole for R̂(λ), which means that{λR̂(λ); 0 < λ < 1} and so{λR̂(λ)∗φ; 0 <

λ < 1} are norm bounded. Let(λn)n∈N converge to zero. Then{λnR̂(λn)∗φ}n is

weak-∗ relatively compact and thus have a weak-∗ accumulation point, say,φ. It

can be proved that

< x, λR̂(λ)φ >=< x, φ >, x ∈ X,

and by properties of pseudo-resolvents, this extends to allλ with <λ > 0. In other

words,φ = λR̂(λ)φ.

Furthermore,

< |û|, φ ><< |û|, φ >≤< λR̂(λ)|û|, φ >=< |û|, λR̂(λ)∗φ >

and, since< |û|, φ > is independent ofλ, we obtain< |û|, φ >.

Next, for arbitraryx̂ ∈ X̂ we have

< |R̂(λ)x̂|, φ > ≤ < R̂(<λ)|x̂|, φ >
=< |x̂|, R̂(<λ)∗φ > = <λ−1 < |x̂, φ >
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which means that the idealI = {x̂ ∈ X̂; < |x|, φ >= 0} is R̂(λ) invariant.

Denote byR̃(λ) the canonical image of̂R(λ) in the quotient spacêX/I; in the

same waỹx denotes the canonical image ofx̂. Then, since the canonical injection

is a lattice homeomorphism (see Example 9), we obtain

|R̃(λ)x̃| ≤ R̃(<λ)|x̃|, x̃ ∈ X̂/I,<λ > 0

and, obviously

R̃(λ)ũ = (λ− iν)−1ũ.

Moreover,< |û|, φ >> 0 which means̃u 6= 0 in X/I and

< R̂(λ)|û| − |û|, φ >=

which is the same as̃R(λ)|ũ| = |ũ| which means that we can use the argument

above to obtain

λR̃(λ+ ikν)ũk = ũk, k ∈ Z,<λ > 0.

This means thatikν ∈ σ(A) and the statement is proved fors(A) being a first

order pole.

Let λ = 0 be a pole of orderp ≥ 2 and suppose we can prove the result for

poles of any order less thanp. Define

Q = lim
λ→0

λpR(λ,A).

ThenQ > 0 is a bounded operator which, moreover satisfiesQA = AQ = 0. The

ideal

I = {x ∈ X; Q|x| = 0}

is (G(t))t≥0-invariant and thus we can consider the problem in the quotient lattice

X̃ = X/I on which the canonical imagẽQ is zero. This implies thatλ = 0 is a

pole of order less thanp of the canonical image of the resolvent and the prove is

finished by induction. �

As we said earlier, Theorem 72 yields Corollary 19 in full generality.
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Corollary 20 Let (G(t))t≥0 be a positive semigroup satisfyingωe(G) < ω0(G).

Thenσper,s(A) = {s(A)}. Thus,(G(t))t≥0 has MAEG.

Note that assumptionωe(G) < ω0(G) ensures thats(A) is a pole ofR(λ,A).

The next step towards AEG requires irreducibility of the semigroup.

6.2.1 Peripheral spectrum of irreducible semigroups

Let (G(t))t≥0 be a positive semigroup on a Banach latticeX generated byA. Re-

call that a closed idealE ⊂ X is said to be invariant under(G(t))t≥0 (or {G(t)}-
invariant) if it isG(t)-invariant for anyt ≥ 0. The semigroup(G(t))t≥0 is called

irreducible if{0} andX are the only{G(t)}-invariant ideals ofX. Furthermore,

(G(t))t≥0 is called strongly irreducible ifG(t) is a strongly irreducible operator

for any t ≥ 0 (that is, ifG(t)u is a quasi-interior point for any0 < u ∈ X).

Clearly, strongly irreducible semigroup is irreducible (see Paragraph 3.3). We

have the following characterization of irreducible semigroups.

Proposition 20 For a positive semigroups(G(t))t≥0 on a Banach latticeX, the

following are equivalent:

(i) (G(t))t≥0 is irreducible;

(ii) For every 0 < x ∈ X and 0 < φ ∈ X∗, there existst ≥ 0 such that

<φ,G(t)x>> 0;

(iii) R(λ,A) is strongly irreducible for all (some)λ > s(A);

(iv) R(λ,A) is irreducible for all (some)λ > s(A).
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Proof. (i) ⇒ (ii) For0 < φ ∈ X∗ we define

E = {x ∈ X;<φ,G(t)|x|>>= 0 for all t ≥ 0}.

This is a closed{G(t)}-invariant ideal inX. Since(G(t))t≥0 is irreducible and

E 6= X, we haveE = {0} which gives(ii). (ii) ⇒ (iii) Take0 < u ∈ X and

λ > s(A). From (79) we have

<φ,R(λ,A)u>=

∞∫
0

e−λt <φ,G(t)u> dt > 0

which shows thatR(λ,A)u is a quasi-interior point for anyλ.

(iii) ⇒ (iv) Obvious.

(iv) ⇒ (i) Using again (79) we see that the closed linear span ofR(λ,A)E is

contained in the closed linear span of{G(t)E; t ≥ 0}. If E is {G(t)}-invariant,

thenR(λ,E) ⊆ E. � Much more information about the spectrum can

be obtained if(G(t))t≥0 is an irreducible semigroup (see Paragraph??). We have

the following main theorem.

Theorem 74 Let (G(t))t≥0 be a positive irreducible semigroup generated byA

and lets(A) > −∞ be a pole of the resolventR(λ,A). Then:

1. s(A) is a first-order pole with geometric multiplicity 1; moreover there ex-

ists a quasi-interior pointx0 ∈ X+ satisfying

Ax0 = s(A)x0,

and a strictly positivex∗0 ∈ X∗
+ such that

A∗x0 = s(A)x∗0.

2. σper,s(A) = s(A) + iνZ for someν ≥ 0 and all elements ofσper,s(A) are

first-order poles ofR(λ,A) with algebraic multiplicity 1.
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Proof. As usual assumes(A) = 0 and letp be the order of the pole0 of

R(λ,A). Define

Q = lim
λ→0

λpR(λ,A).

If p > 1 then, by (26),Q2 = B2
−p = B−2p+1 = 0 as−2p+ 1 < −p. On the other

hand, consider again the(G(t))t≥0 invariant ideal

I = {x ∈ X; Q|x| = 0}.

By irreducibility, I = {0} (as it cannot beX due toQ 6= 0). Thus,Q2 6= 0 and

this contradiction provesp = 1.

The operatorQ is thus a positive projection onKer A. Let x ∈ X+ be such

thatQx = x0 6= 0. SinceAQ = QA, we haveAx0 = 0 and, by the Spectral

Mapping Theorem for point spectrum,G(t)x0 = x0 for any t ≥ 0 and X̄x0 is

a (G(t))t≥0 invariant ideal yielding, by irreducibility,X = X̄x0. Hence,x0 is a

quasi-interior point.

SinceQ∗ is a positive projection onKer A∗, let us considerx∗0 = Q∗x∗; then

A∗x∗0 = 0 andG(t)∗x∗0 = x∗0. Consequently,

J = {x ∈ X; < |x|, x0 >= 0}

is a (G(t))t≥0 invariant closed ideal and thusJ = {0}. This means thatx∗0 is

strictly positive. We can normalize it so that< x0, x
∗
0 >= 1.

To prove that0 is simple, first let us considerx > 0 satisfyingAx = 0 and

normalized to< x, x∗0 >= 1. Since we have

G(t)|x− x0| ≥ |G(t)(x− x0)| = |x− x0|

henceA|x − x0| = 0. If G(t)|x − x0| > |x − x0|, then, by strict positivity

of x∗0, < G(t)|x − x0|, x∗0 >>< |x − x0|, x∗0 >. This is, however, impossible,

as< G(t)|x − x0|, x∗0 >=< G(t)|x − x0|, G(t)∗x∗0 >=< |x − x0|, x∗0 > Thus

G(t)|x− x0| = |x− x0| and consequentlyA|x− x0| = |x− x0|. Defineu = |x−
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x0|+(x−x0) = 2 sup{(x−x0), 0} = 2(x−x0)
+ andv == |x−x0|−(x−x0) =

2 inf{(x − x0), 0} = 2(x − x0)
−. Thus,u, v ∈ X+ andAu = Av = 0. By the

above,u, v are quasi-interior points, or0. If both were non-zero, then both would

be weak units. On the other hand, they are disjoint, hence eitheru = 0 or v = 0,

so one of them must be 0. Assumev = 0. Then|x − x0| = (x − x0) and thus

< |x − x0|, x∗0 >=< x, x∗0 > − < x0, x
∗
0 >= 1 − 1 = 0, which yieldsx = x0.

The caseu = 0 is analogous.

The next step is taking arbitraryy ∈ X satisfyingAy = 0. We write y =

y+−y−. SinceG(t)y = y, we have|y| = |G(t)y)| ≤ G(t)|y| and, by the argument

of the previous paragraph, we findG(t)|y| = |y|. Thus we haveG(t)(y+− y−) =

y+ − y− andG(t)(y+ + y−) = y+ + y−, yieldingG(t)y± = y±. Using again

the argument of the previous paragraph, we findy± =< y±, x∗0 > x0 which gives

y =< y0, x
∗
0 > x0 and proves geometric simplicity ofs(A) = 0.

To prove the second statement, we note that elements ofσper,s(A) belong to

∂σ(A) and thus can be converted into eigenvalues by embedding the problem into

the ultrapowerX̂. Details are, however, quite involved and we omit them here,

see [38, p. 314]. Assume thenσper,s(A) = σp(A). From Theorem 72 we know that

σper,s(A) is cyclic and since0 is an isolated point, it follows thatσper,s(A) = iνZ
for someν ≥ 0. Let iν ∈ σper,s(A) so thatAu = iνu for some0 6= u ∈ X.

ThenG(t)u = eiνtu and thusG(t)|u| ≥ |G(t)u| = |u| and, as in the first part of

the proof, we findG(t)|u| = |u| or A|u| = 0. This givesλR(λ,A)|u| = |u| and

λR(λ + iν, A)u = u for λ ∈ C with <λ > 0. As in the discussion of the proof

of Theorem 72, we seeλR(λ + ikν, A)uk = uk or, equivalently,Auk = ikνuk.

Sinceu is a quasi-interior point ofX we can claim, as in Lemma 6, that actually

R(λ,A) = S−k
u R(λ+ ikν, A)Sk

u.

Sinces(A) = 0 is a first-order pole, we see that every element ofσper,s(A) has the

same property. �
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Hence we can state the final result in our quest for asynchronous exponential

growth.

Corollary 21 If (G(t))t≥0 is a positive and irreducible semigroup withωe(G) <

ω0(G), thenσper,s(A) = {s(A)} ands(A) is a simple eigenvalue admitting a posi-

tive eigenvector. Thus,(G(t))t≥0 has positive AEG.

The problem is to find working techniques which would allow to determine whether

(G(t))t≥0 satisfies the assumptions of Corollary 21. As for generation, the most

fruitful approach seems to be through perturbations. We shall explore several such

techniques in the next subsection.

6.3 Compactness, positivity and irreducibility of perturbed semi-

groups

In Subsection 4.6 we discussed various perturbation theorems ensuring the exis-

tence of the semigroup associated withA + B. In this section we shall discuss

to which extent the asymptotic behaviour of the perturbed semigroup is related to

that of the original one. We shall focus on bounded perturbations. Let us recall

that, by Theorem 46, in this case the perturbed semigroup(GA+B(t))t≥0 is related

to (GA(t))t≥0 by the Duhamel equation:

GA+B(t)x = GA(t)x+

t∫
0

GA(t− s)BGA+B(s)xds, t ≥ 0, x ∈ X (169)

where the integral is defined in the strong operator topology. Moreover,(GA+B(t))t≥0

is given by the Dyson–Phillips series obtained by iterating (87):

GA+B(t) =
∞∑

n=0

Gn(t), (170)
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whereG0(t) = GA(t) and

Gn+1(t)x =

t∫
0

GA(t− s)BGn(s)xds. t ≥ 0, x ∈ X. (171)

The series converges in the operator norm ofL(X) and uniformly fort in bounded

intervals.

6.3.1 Compact and weakly compact perturbations

A model result related to the main question discussed here is

Theorem 75 [26, p. 258] Let(GA(t))t≥0 be strongly continuous semigroup on a

Banach spaceX generated byA and letB be a compact operator. If(GA+B(t))t≥0

is the semigroup generated byA + B, thenGA+B(t) − GA(t) is compact for all

t ≥ 0. In particular

ωe(A+B) = ωe(A). (172)

The proof of this results, as well as of the results below, heavily depends on the

convex compactness property, which we will discuss below.

Theorem 76 If B : Ω → L(X,Y ) is a bounded and strongly measurable function

on a finite measure space(Ω, dµ) such thatB(ω) is a compact operator for each

ω ∈ Ω, then the integral
∫
Ω

B(ω)dµω is compact as well.

Proof. There are many proofs of this result. We sketch one of them, specified to

our particular caseB(s) = GA(t − s)BS(s), whereS is a strongly continuous

function,s ∈ [0, t] andt is fixed. The functionR+ × X 3 (t, x) → GA(t)x is
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jointly continuous. Furthermore, since a strongly continuous function is uniformly

continuous on compact sets, the set

M = {GA(s)Bx s ∈ [0, t], ‖x‖ ≤ c}

is relatively compact inX. Having in mind that the Riemann integral is the norm

limit of Riemann sums, we find that(ct)−1
t∫

0

GA(t − s)BS(s)xds is an element

of the closed convex hull ofM providedc = sup{‖S(s)x‖; s ∈ [0, t], ‖x‖ ≤ 1}.
Since the closed convex hull of a relatively compact set is compact, the statement

follows. �

The assumption of compactness of the perturbing operator is often too restric-

tive. We mentioned earlier that integral operators with natural kernels in important

L1 spaces are not compact but weakly compact. Fortunately, the convex (weak)

compactness property holds in this case as well, though the proof in general case

is much more delicate.

Theorem 77 [44] If B : Ω → L(X, Y ) is a bounded strongly measurable func-

tion on a finite measure space(Ω, dµ) such thatB(ω) is a weakly compact opera-

tor for eachω ∈ Ω, then the integral
∫
Ω

B(ω)dµω is compact as well.

Proof. We sketch here a simple proof of this fact, from [37] whenX = Y =

L1(Ω, dν) with Ω beingσ-finite. By Eberlein-̌Smulian theorem, weak compact-

ness is equivalent to weak sequential compactness, as so we can restrict our at-

tention to separableX (by considering closed spans of sequences). The crucial

ingredient of the proof is the criterion of weak compactness inL1 (see [24, p.

292]): the setE ⊂ L1(Ω, dν) is relatively weakly compact if and only if for any

decreasing nested sequence(Ωj)j∈N ⊂ Ω of measurable sets satisfying
⋂

j Ωj = ∅
we have

sup
f∈E

∫
Ωj

|f(z)|dνz → 0
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asj →∞. Thus, we consider

sup
‖x‖≤1

∫
Ωj

∣∣∣∣∣∣[
∫
Ω

B(ω)xdµω](z)

∣∣∣∣∣∣ dνz≤
∫
Ω

sup
‖x‖≤1

∫
Ωj

|[B(ω)x](z)|dνz

 dµω

where we used the fact that

Ω 3 ω → sup
‖x‖≤1

∫
Ωj

|[B(ω)x](z)|dνz

is measurable on account of separability ofX.

SinceB(ω) is weakly compact, we have

sup
‖x‖≤1

∫
Ωj

|[B(ω)x](z)|dνz → 0

asj →∞. Since

sup
‖x‖≤1

∫
Ωj

|[B(ω)x](z)|dνz ≤ sup
‖x‖≤1

‖B(ω)x‖L1 ≤ C

on account of boundedness of the familyB(ω), the dominated convergence theo-

rem ends the proof. �

With Theorem 76, the proof of Theorem 75 is immediate, since compact per-

turbations do not change the essential spectrum.

For weakly compact perturbations the situation is more delicate: clearly we

know that the differenceGA+B(t) − GA(t) is weakly compact but this does not

yield equality of essential spectral types. Restricting, however, our attention to

spacesL1, we know that the square of a weakly compact operator is compact and

we should be able to use Theorem 6 for power compact operators.
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Unfortunately, the situation is still not obvious, as the relation between the

spectra ofA andA + B is determined by properties ofR(λ,A)B (orBR(λ,A))

and not ofB: for λ ∈ ρ(A)

λ ∈ σ(A+B) ⇔ 1 ∈ σ(BR(λ,A)) ⇔ 1 ∈ σ(R(λ,A)B).

This situation prompted Voigt [46] to introduce concepts ofT -power compact and

strictly power compact operators.C is said to beT power compact on∆ ∈ ρ(T )

if there isn such that(CR(λ, T ))n is compact forλ ∈ ∆. C is strictly power

compact ifDC is power compact for any boundedD.

We note that Voigt introduces in [46] yet another ’essential spectrum’ of an

operatorC. However, the unbounded component of his essential spectrum coin-

cides with the unbounded component of the set of all Fredholm points ofC and

thus the essential spectral radii determined by all these definitions coincide. The

main result needed here is

Theorem 78 [46, Corollary 1.4] If C and T are bounded andC is T power

compact on the unbounded component ofρ(A), then the unbounded components

of the Voigt’s essential spectrum ofT andT + C coincide.

By the remark above the theorem, unbounded components of essential spectra of

T andT + C coincide and thus

re(T ) = re(T + C). (173)

The importance of this result here is due to the fact that weakly compact operators

form an ideal; that is, ifC is weakly compact, thenAC andCA are weakly

compact for any boundedA. Thus, in anyL1 space, weakly compact operators

are strictly power compact with(AC)2, (CA)2 compact. Hence, arguing as for

Theorem 75 with the aid of Theorem 77 we arrive at the following result.

Corollary 22 If (GA(t))t≥0 is a strongly continuous semigroup on a Banach space

X = L1(Ω) generated byA and letB be a weakly compact operator. If(GA+B(t))t≥0

138



is the semigroup generated byA + B, thenGA+B(t) − GA(t) is a strictly power

compact for allt ≥ 0. Hence, in particular

ωe(GA+B) = ωe(GA). (174)

6.3.2 Eventual uniform continuity of perturbed semigroups

If a semigroup is eventually uniformly continuous, then the Spectral Mapping

Theorem is valid. Moreover, many compactness results can be proved if the un-

derlying semigroup is eventually uniformly continuous. hence, we shall discuss

here a few relevant results for the perturbed semigroup.

If F andG are strongly continuous operator valued functions, then the convo-

lution

(F ∗G)(t)(x) :=

t∫
0

F (t− s)G(s)xds, t ≥ 0, x ∈ X, (175)

is well defined. We have the following basic result:

Lemma 7 If F andG are strongly continuous, then

(i) If F is uniformly continuous (resp., compact) on(0,∞), thenF ∗G andG∗F
are uniformly continuous (resp., compact) on(0,∞);

(ii) If F is uniformly continuous (resp., compact) on(α,∞), andG is uniformly

continuous (resp., compact) on(β,∞), thenF ∗G andG∗F are uniformly

continuous (resp., compact) on(α+ β,∞).
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Proof. (i) For t > 0,h > 0 andx ∈ X we have

lim
h↘0

‖(F ∗G)(t+ h)x− (F ∗G)(t)x‖

≤ lim
h↘0

‖
t∫

0

‖F (t+ h− s)− F (t− s)‖ sup
τ∈[0,t]

‖G(τ)‖‖x‖ds

+ lim
h↘0

‖
t+h∫
t

sup
τ∈[0,t]

‖F (τ)‖ sup
τ∈[0,t]

‖G(τ)‖‖x‖ds

= 0,

uniformly in ‖x‖ ≤ 1. This shows continuity from the right. Continuity from the

left follows in the same way. The statement forG ∗ F follows by symmetry.

Compactness follows directly from Theorem 76.

The uniform continuity in the statement (ii) follows through similar but more

detailed estimates. To prove compactness, we taket > α+β and if0 < s < t−α,

thent− s > α and if t− α < s < t, thens > β. Now

(F ∗G)(t)x =

t−α∫
0

F (t− s)G(s)xds+

t∫
t−α

F (t− s)G(s)xds

and the statement follows by applying Theorem 76 to each term. �

Consider the semigroup(GA(t))t≥0 and the perturbed semigroup(GA+B(t))t≥0.

From Duhamel formula we have

GA+B = GA +GA ∗BGA+B = GA +GAB ∗GA+B. (176)

We define the Volterra operator associated with this problem as

VF = GA ∗BF = GAB ∗ F

for any strongly continuousF .

We have the following result.
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Theorem 79 SupposeB is bounded. Then

(a) If (GA(t))t≥0 is immediately uniformly continuous (resp., compact), then the

same holds for(GA+B(t))t≥0;

(b) If (GA(t))t≥0 is uniformly continuous (resp., compact) on(α,∞) and if there

existsk ∈ N such thatVkGA is uniformly continuous (resp., compact)

on (0,∞), then(GA+B(t))t≥0 is uniformly continuous (resp., compact) on

(kα,∞).

Proof. (i) follows immediately from Lemma 7 (i) asGA+B = GA + GA ∗
BGA+B.

To prove (ii) we note that by Dyson-Phillips expansion

GA+B(t) =
k∑

n=0

VnGA(t) +
∞∑

n=1

Vn(VkGA(t))

where the series converges in uniform operator topology on compact intervals by

Theorem 46. The terms in the first part are uniformly continuous (resp., compact)

on (kα,∞) by Lemma 7 (ii). The second part can be written as

∞∑
n=1

Vn(VkGA) = GA ∗B(VkGA) +GA ∗B(GA ∗ VkGA) + . . .

where each term is uniformly continuous on(0,∞) by Lemma 7 (i) and converges

in uniform operator topology, as above. �

6.3.3 Irreducibility of perturbed semigroups.

Here we assume that(GA(t))t≥0 is a positive semigroup andB is aa bounded

positive operator. ThenBR(λ,A) are positive for sufficiently largeλ (λ > s(A))
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and the terms of Dyson-Phillips expansionVnGA(t) are positive operators for

t ≥ 0. The last statement follows from the fact that iterates defining this expansion

are positive by (90). As a consequence, we have

0 ≤ GA(t) ≤ GA+B(t)

and consequently

ω0(A) ≤ ω0(A+B).

The formula (86) shows that for sufficiently largeλ ∈ R we have

0 ≤ R(λ,A) ≤ R(λ,A+B)

so that

s(A) ≤ s(A+B).

This follows, e.g. from the fact that is we approachs(A) thenR(λ,A) blows up

and thusR(λ,A+B) must blow up, hences(A) /∈ ρ(A+B).

Theorem 80 LetX be a Banach lattice,(GA(t))t≥0 a positive semigroup andB a

positive bounded operator. The perturbed semigroup(GA+B(t))t≥0 is irreducible

if and only ifI = {0} andI = X are the only closed ideals satisfying

(a)GA(t)I ⊆ I, t ≥ 0,

(b)BI ⊆ I.

Proof. Assume that(GA+B(t))t≥0 is irreducible and letI satisfies (a) and (b).

Using Proposition 20, we obtainR(λ,A)I ⊆ I. HenceK(λ)I = R(λ,A)BI ⊆ I.

By (86) we obtainR(λ,A+B)I ⊆ I and thusI = {0} or I = X.

To prove the converse, assumeI = {0} andI = X are the only closed ideals

satisfying (a) and (b). We show that theR(λ,A + B) is irreducible which is

142



equivalent, again by Proposition 20, to irreducibility of(GA+B(t))t≥0. So, letI

be a closed ideal satisfyingR(λ,A+B)I ⊆ I for λ > s(A) andx ∈ I. We have

|R(λ,A)x| ≤ R(λ,A)|x| ≤ R(λ,A+B)|x| ∈ I

that isR(λ,A)I ⊆ I and, equivalently,GA(t)I ⊆ I. Take againx ∈ I; then for

λ > s(A)

|R(λ,A)BR(λ,A+B)x| ≤ R(λ,A)BR(λ,A+B)|x|
= (R(λ,A+B)−R(λ,A))|x| ≤ R(λ,A)|x| ∈ I

where we used (86). Thus, forµ > s(A) we have also

R(µ,A)R(λ,A)BR(λ,A+B)x ∈ X

providedx ∈ I. Using the resolvent equation, we get

(R(µ,A)−R(λ,A))BR(λ,A+B)x ∈ I,

hence, by linearity ofI,

R(µ,A)BR(λ,A+B)x ∈ I,

We multiply the above byλ, letλ→∞, useλR(λ,A+B)x→ x and closedness

of I to obtainR(µ,A)Bx ∈ I. Multiplying the latter byµ and repeating the

argument we obtainBx ∈ I henceI isB invariant.

Thus (a) and (b) are satisfied yieldingI = {0} or I = X and hence(GA+B(t))t≥0

is irreducible. �

6.3.4 A model of evolution of a blood cell population

We consider a population of blood cells distinguished only by their size and de-

scribe the population by the density functionn(t, s) of cells having sizes in time

t. The following processes take place when the time passes:
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1. Each cell grows linearly in time;

2. Each cell dies with a probability depending on size;

3. Each cell divides into two daughter cells of equal size with a probability

depending on size;

Moreover, we assume that there exists a maximal cell size (here normalized to 1);

also there exists a minimal cell sizes = α > 0 below which no division can occur.

As a consequence of the last assumption, if we start with initial population with

sizes greater thatα/2, the size of each cell in the population must satisfys > α/2

and we can assume the boundary condition

n(t, α/2) = 0, t > 0.

These assumption lead to the following evolution equation:

nt(t, s) = −ns(t, s)− µ(s)n(t, s)− b(s)n(t, s)

+4b(2s)n(t, 2s)χ[α/2,1/2](s), s > α/2, t > 0

u(0, s) = n0(s), (177)

whereχA is the characteristic function of the setA. We assume that the death

rateµ is a positive continuous function on[α/2, 1]. The division rate should be

continuous withb(s) > 0 on (α, 1) andb(s) = 0 elsewhere.

We consider this equation as an abstract evolution equation inX = L1([α/2, 1], dx)

and define operators

Af = −f ′ − (µ+ b)f (178)

onD(A) = W 1,1([α/2, 1]) and

(Bf)(s) = 4b(2s)n(t, 2s)χ[α/2,1/2](s) (179)

onD(B) = X (since multiplication by 2 is bi-lipschitz, the composition is well-

defined) as an operation inX.
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Hence, we define

K = A+B, D(K) = D(A).

The following result is standard.

Lemma 8 The operator(A,D(A)) generates aC0-semigroup explicitly given by

GA(t)f =

 e
−

s∫
s−t

(µ(τ)+b(τ))dτ

f(s− t) for s− t > α/2

0 otherwise.
(180)

The spectrum ofA is empty and the resolventR(λ,A), given explicitly by

(R(λ,A)g)(s) =

s∫
α/2

e
−

s∫
σ

(µ(τ)+b(τ))dτ
g(σ)dσ (181)

is compact.

We have also

Lemma 9 The semigroup(K(t))t≥0 is eventually uniformly continuous and even-

tually compact fort > 1− α/2.

Proof. To prove eventual uniform continuity, we first note that(GA(t))t≥0 is

zero fort > 1 − α/2 and thus uniformly continuous on this interval. Hence, by

Theorem 79 (ii), it suffices to prove immediate uniform continuity of some term

of the Dyson-Phillips expansion. It turns out thatVGA is immediately uniform

continuous and hence(K(t))t≥0 is uniformly continuous fort > 1− α/2.

To prove compactness, we note thatR(λ,A) is compact and, asR(λ,K) is

given by uniformly converging series (86) of compact operators,R(λ,K) is com-

pact as well. Hence,R(λ,A)GK(t) is compact for sucht.
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It is interesting that this implies compactness of(GK(t))t≥0. Indeed, defining

R(t)x =
t∫

0

GK(s)xds, we haveAR(t)x = GK(t)x− x and

R(t) = R(λ,A)(I −GK(t)) + λR(λ,A)R(t)x

so that, for a fixedt0 > 1− α/2,

R(t0 + h)−R(t0) = −R(λ,A)[GK(t0 + h)−GK(t0)]

−λR(λ,A)[R(t0 + h)−R(t0)]. (182)

Since(GK(t))t≥0 is uniformly continuous att0,

GK(t0) = lim
h→0

h−1(R(t0 + h)−R(t0))

in the uniform topology. Since the first term on the right-hand side in (182) is

compact and the second converges toλR(λ,A)GK(t0), which is compact,GK(t0)

is compact. Thus, we get compactness fort > 1− α/2. �

We note that eventual compactness impliesωe(GK) = −∞ and hence clearly

ωe(GK) < ω0(GK).

The final step is to establish irreducibility of(GK(t))t≥0.

Lemma 10 The semigroup(GK(t))t≥0 is irreducible.

Proof. Let us analyse how the resolvent

R(λ,K) = R(λ,A) +R(λ,A)BR(λ,A) + . . .

acts on functions with support (a.e) in(s0, 1] (precisely,s0 = sup{s} such that

suppf ⊂ [s, 1]. Then, by (181),R(λ,A)f > 0 on (s0, 1], BR(λ,A)f > 0 on

(s0/2, 1/2], R(λ,B)BR(λ,A)f > 0 on (s0/2, 1] and, continuing,R(λ,K)f > 0

on [α/2, 1]. Using the description of ideals inL1, Example 10, we see that no
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closed non-trivial ideal can be invariant underR(λ,K) and, by Proposition 20,

we obtain irreducibility of the semigroup. �

We collect all the information in the following summarising theorem.

Theorem 81 Let (GK(t))t≥0 be theC0-semigroup corresponding to (186). Then

there is a dominant eigenvalue equal tos(A) and the corresponding 1-dimensional

positive projectionP such that

‖e−s(A)tGK(t)− P‖ ≤Me−εt

for someM, ε > 0 and all t ≥ 0. Thus,(GK(t))t≥0 has a positive AEG.

The dominant eigenvalue can be found by solving a scalar equation.

Proposition 21 Assumeα ≥ 1/2. The spectrumσ(K) only consists of eigenval-

ues which are solutions of the characteristic equation

ξ(λ) := −1 +

1/2∫
α/2

4b(2σ)e
−

2σ∫
σ

(µ(τ)+b(τ)+λ)dτ
dσ = 0. (183)

The spectral bounds(A) is the uniqueλ0 ∈ R, for whichξ(λ0) = 0. The semi-

group(GK(t))t≥0 is stable if and only ifξ(0) < 0.

Proof. The first statement follows from the fact thatK has a compact resolvent.

For the second statement we have to solveλf −Kf = 0; that is

λf(s) + f ′(s) + (µ(s) + b(s))f(s) = 0, for s ∈ [1/2, 1],

λf(s) + f ′(s) + (µ(s) + b(s))f(s)− 4b(2s)f(2s) = 0,

for s ∈ [α/2, s/2). (184)
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Solving the first equation with a normalizing conditionf(1) = 1 yields

f(s) = e

1∫
s
(µ(σ)+b(σ)+λ)dσ

for s ∈ [1/2, 1]. Turning to the second equation we see that ifs ∈ [α/2, 1/2], then

the argumentg(2s) varies betweenα and1 and we can substitute

f(2s) = e

1∫
2s

(µ(σ)+b(σ)+λ)
dσ,

at least on the interval[1/4, 1/2] and solve the second equation in (184) as a non-

homogeneous equation. Taking into account that the solution must be continuous

ats = 1/2, we obtain

f(s) = e

1∫
s
(µ(σ)+b(σ)+λ)dσ

1− 4

1/2∫
s

b(2σ)e
−

2σ∫
σ

(µ(τ)+b(τ)+λ)dτ
dσ


This solution must satisfy the boundary conditionf(α/2) = 0, which gives the

desired form of the characteristic function in (183). Next, the functionξ, re-

stricted toR is continuous, strictly decreasing withlimλ→−∞ ξ(λ) = +∞ and

limλ→∞ ξ(λ) = −1 and hence has exactly one real solutionλ0. This solution is

negative only ifξ(0) < 0. �

6.3.5 Emergence of chaos in the blood cell model

Consider a slightly modified blood cell evolution model (at the beginning, without

death and division terms). the transport equation

ut = −xux + 0.5u, u(x, 0) = u0(x), (185)

in the spaceL1([0, 1]). This equation, was analysed in [W] in the space of continu-

ous function and the occurrence of chaos was attributed to the insufficient supply

of the most primitive blood cells. It was also investigated in the same space in

[Rud, LM] in the statistical framework using the concept of exactness.
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Let u(0, x) = u0(x), 0 < x < 1. The explicit solution to (185) is given by

u(t, x) = T (t)u0(x) = et/2u0(xe
−t). We use Theorem 36. The eigenfunctions of

the generator are found to beuλ(x) = x−λ+1/2 providedλ ∈ U = {Reλ < 3/2}.
Thus the first assumption of Theorem 36 is satisfied.

Consider now the function

Fλ[g] =

1∫
0

x−λ+1/2g(x)dx

whereg ∈ L∞([0, 1]). By d
dλ
x−λ+1/2 = (lnx)x−λ+1/2 we see thatFλ[g] is analytic

in U . Changing variable according toz = − lnx we obtain

0 =

1∫
0

x−λ+1/2g(x)dx =

∞∫
0

e(−
1
2
+Reλ)z

(
e−zg(e−z)

)
eiImλzdz.

Now, the functionF (z) = e(−
1
2
+Reλ)z (e−zg(e−z)) is in L1([0,∞]) for the stip-

ulated range ofλ and Imλ is not restricted, thus the above integral represents

the classical Fourier transform of a function extended by0 for z < 0. Since the

transform is zero,g(x) = 0 for all x.

Next we consider a more sophisticated version of (185)

ut(t, x) = −xux(t, x) + ηu(t, x) + 4βu(t, 2x)χ[0,1/2](x)

u(0, x) = φ(x) (186)

in L1([0, 1], dx), whereχA is the characteristic function of the setA. Change of

variablesx = e−y, y ≥ 0 gives

vt(t, y) = vy(t, y) + ηv(t, x) + 4βv(t, y − ln 2)χ[ln 2,∞](y)

u(0, y) = ψ(y) = φ(e−y) (187)

in X = L1([0,∞), e−ydy). A nice way to find the eigenvectors (El Mourchid) is

to consider the recurrence forvn := v|[n ln 2,(n+1) ln 2)

v0 = e(λ−η), y ∈ [0, ln 2),
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vn
y = (λ− η)vn − 4βvn−1(y − ln 2),

y ∈ [n ln 2, (n+ 1) ln 2), n ≥ 1

which gives formal eigenvectors as

vn(y) = e(λ−η)y

n∑
k=0

(−4βe−(λ−η) ln 2)n

n!
(y − n ln 2)n (188)

for n ln 2 ≤ y < (n+ 1) ln 2. Combining and rearranging terms (justified later by

absolute convergence), we get

vλ(y) = e(λ−η)y

∞∑
n=0

(−4βe−(λ−η) ln 2)n

n!
(y − n ln 2)nχ[n ln 2,∞)(y). (189)

Estimating the terms of the series inL1(R+, e
−ydy) we have

(4βe−(<λ−η) ln 2)n

n!

∞∫
n ln 2

e−(η−<λ+1)y(y − n ln 2)ndy

=
(2β)n

n!

∞∫
0

e−(η−<λ+1)zzndz

=

(
2β

η −<λ+ 1

)n

and we see that the series forvλ is convergent in the half-plane<λ < η + 1− 2β

and uniformly convergent is any closed half-plane contained in it. It is easy to see

that each term of the series is of the form

λ→ φ(λ) = eλ(y−a)f(y)

wherea is a constant andf is such that the above function is integrable (with

weighte−y) for any fixedλ with <λ < η+ 1− 2β. Thus, taking suchλ1, λ2 with,

say,<λ1 > <λ2, we have

‖φ(λ1)− φ(λ2)‖ ≤
∞∫

0

|1− e(λ2−λ1)(y−α)|eλ1(y−α)f(y)e−ydy
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we see that the term between the absolute bars is bounded. Hence, by the domi-

nated convergence,φ is continuous and, by the uniform convergence of the series,

vλ is a continuous function ofλ. Consequently, ifη + 1 − 2β > 0, the dynamics

generated by (186) is subchaotic.

7 Asymptotic analysis of singularly perturbed dy-

namical systems

The goal of this section is to give a concise explanation of concepts of asymp-

totic analysis and, in particular, of one technique of the asymptotic analysis which

essentially stems from the Chapman-Enskog procedure.

In order to introduce this asymptotic procedure, let us consider a particular

case of singularly perturbed abstract initial value problem
∂fε

∂t
= Sfε +

1

ε
Cfε,

fε(0) = f0,
(190)

where the presence of the small parameterε indicates that the phenomenon mod-

elled by the operatorC is more relevant than that modelled byS or, in other words,

they act on different time scales.

As elsewhere in these lectures, we are concerned with kinetic type problems

and the operatorS describes some form of transport, whereasC is an interac-

tion/transition operator describing interstate transfers, e.g., they may be collision

operator in the kinetic problems or a transition matrix in the structured population

theory.

We are often interested in situations when the transition processes between

structure states are dominant. If this is the case, the population quickly becomes
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homogenised with respect to the structure and starts to behave as an unstructured,

governed by s suitable equations (which in analogy with the kinetic theory will

be calledhydrodynamic). These equations should be the limit, or approximating,

equation for (190) asε→ 0 (the parameterε in such a case is related to the mean

free time between state switches).

To put this in a mathematical framework, we can suppose to have on the right-

hand side a family of operators{Cε}ε>0 = {S + 1
ε
C}ε>0 acting in a suitable

Banach spaceX, and a given initial datum. The classical asymptotic analysis

consists in looking for a solution in the form of a truncated power series

f (n)
ε (t) = f0(t) + εf1(t) + ε2f2(t) + · · ·+ εnfn(t),

and builds up an algorithm to determine the coefficientsf0, f1, f2, . . . , fn. Then

f
(n)
ε (t) is an approximation of ordern to the solutionfε(t) of the original equation

in the sense that we should have

‖fε(t)− f (n)
ε (t)‖X = o(εn) , (191)

for 0 ≤ t ≤ T , whereT > 0.

It is important to note that the zeroth-order approximation satisfies

Cf0(t) = 0

which is the mathematical expression of the fact that the hydrodynamic approx-

imation should be transition-free and that’s why the null-space of the dominant

collision operator is called thehydrodynamic spaceof the problem.

Another important observation pertains to the fact that in most cases the limit

equation involves less independent variables than the original one. Thus the solu-

tion of the former cannot satisfy all boundary and initial conditions of the latter.

Such problems are calledsingularly perturbed. If, for example, the approximation

(191) does not hold in a neighbourhood oft = 0, then it is necessary to introduce
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an initial layer correction by repeating the above procedure with rescaled time to

improve the convergence for smallt. The original approximation which is valid

only away fromt = 0 is referred to as thebulk approximation.

Similarly, there approximation could fail close to the spatial boundary of the

domain as well as close to the region where the spatial and temporal boundaries

meet. To improve accuracy in such cases one introduces the so-calledboundary

andcorner layercorrections, but we will not discuss them here.

A first way to look at the problem from the point of view of the approximation

theory is to find, in a systematic way, a new (simpler) family of operators, still

depending onε, sayBε, generating new evolution problems

∂ϕε

∂t
= Bεϕε,

supplemented by appropriate initial conditions, such that the solutionsϕε(t) of the

new evolution problem satisfy

‖fε(t)− ϕε(t)‖X = o(εn) , (192)

for 0 ≤ t ≤ T , whereT > 0 andn ≥ 1. In this case we say thatBε is a

hydrodynamic approximation ofCε to ordern.

This approach mathematically produces weaker results than solving system

(190) for eachε and eventually taking the limit of the solutions asε → 0. But in

real situation,ε is small but not zero, and it is interesting to find simpler operators

Bε for modelling a particular regime of a physical system of interacting particles.

A slightly different point of view consists in requiring that the limiting equa-

tion for the approximate solution does not containε. In other words, the task is

now to find a new (simpler) operator, sayB, and a new evolution problem

∂ϕ

∂t
= Bϕ,
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with an appropriate initial condition, such that the solutionsϕ(t) of the new evo-

lution problem satisfy

‖fε(t)− ϕ(t)‖X → 0, as ε→ 0, (193)

for 0 ≤ t ≤ T , whereT > 0.

In this case we say thatB is the hydrodynamic limit of operatorsCε asε→ 0.

This approach can be treated as (and in fact is) a particular version of the previous

one as very often the operatorB is obtained as the first step in the procedure lead-

ing eventually to the family{Bε}ε≥0. For instance, for the nonlinear Boltzmann

equation with the original Hilbert scaling,B would correspond to the Euler sys-

tem, whereasBε could correspond to the Navier-Stokes system withε-dependent

viscosity, or to Burnett equation at yet higher level.

In this review I will focus on the first method which, in some sense, is dic-

tated by particular applications, where the scaling is given. The other may be

seen as more mathematical as one is then looking for suitable scalings of indepen-

dent variables and physical parameters which lead to the limiting equations not

depending onε, see [10, 9].

In any case the asymptotic analysis, should consist of two main points:

- determining an algorithm which provides in a systematic way the approximat-

ing familyBε (or the limit operatorB),

- proving the convergence offε in the sense of (192) (or of (193)).

Even if the formal part and the rigorous part of an asymptotic analysis seem not

to be related, the formal procedure can be of great help in proving the convergence

theorems.

We will focus on the modification of the classical Chapman-Enskog procedure

which was adapted to a class of linear evolution equations by J.Mika at the end of
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the 1970s and later extended to singularly perturbed evolution equations arising

in the kinetic theory. The advantage of this procedure is that the projection of the

solution to the Boltzmann equation onto the null-space of the collision operator,

that is, the hydrodynamic part of the solution, is not expanded inε, and thus the

whole information carried by this part is kept together. This is in contrast to the

Hilbert type expansions, where, if applicable, only the zero order term of the

expansion of the hydrodynamic part is recovered from the limit equation.

The main feature of the modified Chapman-Enskog procedure is that the ini-

tial value problem is decomposed into two problems, for the kinetic and hydrody-

namic parts of the solution, respectively. This decomposition consists in splitting

the unknown function into the part belonging to the null spaceV of the opera-

tor C, which describes the dominant phenomenon, whereas the remaining part

belongs to the complementary subspaceW .

Thus the first step of the asymptotic procedure is finding the null-space of the

dominant collision operatorC; then the decomposition is performed using the

(spectral) projectionP onto the null-spaceV by applyingP and the complemen-

tary projectionQ = I − P to equation (190). In this one obtains a system of

evolution equations in the subspacesV andW . At this point the kinetic part of

the solution is expanded in series ofε, but the hydrodynamic part of the solution

is left unexpanded. In other words, we keep all orders of approximation of the

hydrodynamic part compressed into a single function.

One of the main drawback of the classical approach is that the initial layer

contribution is neglected and transitional effects are not taken into account. To

overcome this, two time scales are introduced in order to obtain the necessary

corrections. In general, the compressed asymptotic algorithm permits to derive in

a natural way the hydrodynamic equation, the initial condition to supplement it,

and the initial layer corrections.

Summarizing, the original Chapman-Enskog method is improved by the intro-
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duction of two new ingredients:

- the projection of the original equation onto the hydrodynamic subspace,

- the analysis of the evolution equations in terms of the theory of semigroups.

Taking these new ingredients into account, we obtain the following main ad-

vantages:

- we can build an algorithm listing the steps of the procedure to be followed,

- we are able to establish all the mathematical properties of the full and limit

solutions needed for the rigorous convergence proof.

7.1 Compressed expansion

For clarity, we present the compressed method on a simplified model with the

small parameter appearing only in one place:

∂tu = Su+
1

ε
Cu, (194)

in a Banach spaceX . However, the analysis can be extended to more general

cases.

The success of the method depends on the spectral properties of the operators

S andC. To be able to start, we must assume thatλ = 0 is the dominant simple

eigenvalue of the operatorC.

It is easy to see that this requirement amounts toC being the generator of a

semigroup having AEG. The fact thatλ = 0 needs to be dominant ensures an

exponential decay of the initial layer. This assumption may, however, be relaxed

if we are not that interested in the properties of the layer.
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Remark 12 In many cases we have several state variables and the operatorC only

acts on some of them. Then the above requirement refers to the action ofC in this

restricted space.

The corresponding eigenspace (the hydrodynamic space ofC) is thus one di-

mensional; we denote byP the spectral projection of the state space onto this

space. LetQ = I − P be the complementary projection. Accordingly, byPu =

v we denote the hydrodynamic part of the solutionu and byQu = w the kinetic

part.

Applying these projections on both sides of (194) we get

∂tv = PSPv + PSQw
ε∂tw = εQSQw + εQSPv +QCQw, (195)

with the initial conditions

v(0) =
o
v, w(0) =

o
w,

where
o
v = P o

u,
o
w = Q o

u.

We have kept the superfluous symbolsPv andQw for the sake of notational

symmetry.

The projected operatorPSP vanishes for many types of linear equations and,

for simplicity, we perform analysis for such a case. Thus, we obtain the following

form of (195)

∂tv = PSQw

∂tw = QSPv +QSQw +QAQw +
1

ε
QCQw (196)

v(0) =
o
v, w(0) =

o
w . (197)
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We represent the solution of (196) as a sum of the bulk and the initial layer

parts:

v(t) = v̄(t) + ṽ(τ), (198)

w(t) = w̄(t) + w̃(τ), (199)

where, in this case. the variableτ in the initial layer part is given byτ = t/ε.

Other scalings may require different formulae forτ .

Equations for the bulk part and the initial layer part are sought independently.

The following algorithm describes the main features of the compressed asymp-

totic procedure are:

Algorithm 1

1. The bulk approximation̄v is not expanded into powers ofε.

2. The bulk approximation̄w is explicitly written in terms of̄v and expanded

in powers ofε.

3. The time derivative∂tv̄ and the initial valuēv(0) are expanded into powers

of ε.

Thus

w̄ = w̄0 + εw̄1 +O(ε2),

ṽ = ṽ0 + εṽ1 +O(ε2), (200)

w̃ = w̃0 + εw̃1 +O(ε2).

Substituting the expansion for̄w into (196) and comparing terms of the same

powers ofε yield

∂tv̄ = PSQ(w̄0 + εw̄1 +O(ε2)). (201)
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and

w̄0 ≡ 0,

w̄1 = −(QCQ)−1QSP v̄.

Inserting the expressions for̄w0 andw̄1 into (201) gives the approximate ’diffu-

sion’ equation

∂tv̄ = −εPSQ(QCQ)−1QSP v̄ +O(ε2). (202)

For the initial layer a similar procedure yields

ṽ0(τ) ≡ 0,

∂τ w̃0 = QCQw̃0, (203)

∂τ ṽ1 = PSQw̃0, (204)

∂τ w̃1 = QCQw̃1 +QSP ṽ0 +QSQw̃0. (205)

We observe that, due tōw0 ≡ 0, the initial condition forw̃0 is w̃0(0) =
o
w.

Solving (203) with this initial value allows to integrate (204) which gives

ṽ1(τ) = PSQ(QCQ)−1eτQCQ o
w, (206)

upon whichṽ1(0) = PSQ(QCQ)−1 o
w. This in turn allows one to determine

the initial condition for the diffusion equation: we have from (199) that
o
v =

v̄(0) + εṽ1(0) +O(ε2) so that

v̄(0) =
o
v −εPSQ(QCQ)−1 o

w +O(ε2). (207)

In what follows we adopt a uniform notation valid for all discussed examples.

In general, byρ we shall denote a solution of the ”diffusion” equation determined

by discarding theO(ε2) terms in (202), that is,

∂tρ = −εPSQ(QCQ)−1QSPρ. (208)
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Thus,ρ is expected to provide an approximation ofv̄. By ρ̂ we denote the solution

of this equation with uncorrected initial condition̂ρ(0) =
o
v and byρ̄ the solution

with the corrected initial value obtained by discarding theO(ε2) terms in (207),

that is,ρ̄(0) is given by

ρ̄(0) =
o
v −εPSQ(QCQ)−1 o

w . (209)

Specific formulae will be given for each case separately. As we noted earlier, for

the the procedure to start, we needλ = 0 to be a simple eigenvalue which thus

admits a spectral projection onto its eigenspace. This condition is satisfied if, in

particular, this eigenvalue is isolated. However, the existence of exponentially de-

caying initial layer requires the operatorQCQ to generate a semigroup of negative

type inQX . SinceQ commutes withC, the generation is obvious. However, to

ensure the negative type, it is necessary to haves(QCQ) < 0. This condition is

equivalent to(GC(t))t≥0 having AEG.

7.1.1 Can we prove the convergence?

To this end we need to find an equation satisfied by the error which is defined as

y(t) = v(t)− [v̄(t) + εṽ1(t/ε)],

z(t) = w(t)− [w̃0(t/ε) + ε(w̄1(t) + w̃1(t/ε))]. (210)

Inserting (formally) the error into (195) we obtain

∂ty = PSPy + PSQz + εPSP ṽ1 + εPSQw̃1,

∂tz = QSPy +QSQz +
1

ε
QCQz + εQSQw̃1

+εQSP ṽ1 + εQSQw̄1 − ε∂tw̄1. (211)

We observe that, denoting the total errorE(t) = y(t) + z(t), the error system

(211) can be written as

∂tE =

(
S +

1

ε
C
)
E + εF̄ + εF̃
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Denoting by(Gε(t))t≥0 the contractive semigroup generated byS + ε−1C, we get

‖E(t)‖ ≤ ‖E(0)‖+ ε

t∫
0

‖F̄ (s)‖ds+ ε

t∫
0

‖F̃ (s)‖ds.

It can be proved thatE(0) = O(ε2) and so this equation yields the error of ap-

proximation to beO(ε), which is not good as we haveε order terms in the ap-

proximation. A closer look at the term involving̃F shows that it containse−t/ε

which, upon integration, produces anotherε so that the initial condition and the

initial layer contribution to the error areO(ε2). The fact that the contribution of̄F

is alsoO(ε2) is highly nontrivial but can be proved for a large class of problems.

It is important to note that the above considerations show that the presented

asymptotic procedurepotentially produces the convergence of the expected or-

der. Since in most cases we work with unbounded operators, every step must be

carefully justified.

7.1.2 How this works in practice: diffusion approximation of the telegraph

equation

Here the compressed asymptotic procedure is applied to the telegraph equation

∂t

[
v

w

]
= S

[
v

w

]
+

1

ε
C

[
v

w

]
, (212)

where

S =

[
0 −b∂x

−c∂x 0

]
, C =

[
0 0

0 −d

]
.

or

∂tv + b∂xw = 0,

∂tw + c∂xv +
d

ε
w = 0, (213)
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with constant coefficientsb, c, d and a small parameterε > 0 .

The system (213) is supplemented by the initial conditions

v(0) =
o
v, w(0) =

o
w, (214)

and the homogeneous Dirichlet conditions

v(−1, t) = v(1, t) = 0, t > 0. (215)

To avoid the effect of a boundary layer, we assume that
o
v and

o
w are three times

differentiable and

∂x
o
v (±1) = 0 ,

o
w (±1) = 0 , ∂xx

o
w (±1) = 0. (216)

This system may describe the voltage and the current in a telegraphic cable, where

thea, b, c andd are the loss coefficient, the resistance, the capacity and the self

induction respectively or it can be considered as a simplified (two-velocity) linear

Boltzmann equation because the relevant spectral properties are similar.

The diffusion approximation can be derived from (208), using the compressed

asymptotic procedure, by taking

P

[
v

w

]
=

[
v

0

]
,

Q

[
v

w

]
=

[
0

w

]
.

Then

QSP

[
v

0

]
= Q

[
0 −b∂x

−c∂x 0

][
v

0

]
=

[
0

−c∂xv

]
,

PSQ

[
0

w

]
= P

[
0 −b∂x

−c∂x 0

][
0

w

]
=

[
−b∂xw

0

]
,

162



The inverse(QCQ)−1 is given by

(QCQ)−1

[
0

w

]
=

[
0

−w/d

]
.

Then

PSQ(QCQ)−1QSP

[
v

0

]
= PSQ

[
0

c
d
∂xv

]
=

[
− bc

d
∂xx v

0

]
.

Hence the approximation diffusion equation, as given by (208), is

∂tρ = ε
bc

d
∂2

xxρ. (217)

The uncorrected initial condition isρ(0) = ρ̂(0) =
o
v, whereas the corrected one

can be derived from (209) usingPSQ and(QCQ)−1 as calculated above, which

gives

ρ̄(0) =
o
v −εPSQ(QCQ)−1 o

w =
o
v −ε b

d
∂x

o
w . (218)

The initial layer is derived from (206) and is given by

ṽ1(τ) = PSQ(QCQ)−1eτQCQ o
w =

b

d
e−dτ∂x

o
w, (219)

whereτ = t/ε.

Let us denote

D3 = {u ∈ W 3
2 ([−1, 1]); u|x=±1 = 0, ∂2

xxu|x=±1 = 0}

The following theorem is true.

Theorem 82 If
o
v,

o
w∈ D3 and the compatibility conditions (216) are satisfied.

Then there is a constantC such that

‖v(t)− ρ(t)− εṽ1(t/ε)‖ ≤ Cε2

uniformly on[0,∞)
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7.1.3 Age structured population model

A seemingly similar system is offered by

∂tn = Hn +Mn +
1

ε
Kn, (220)

wheren = (n1, . . . , N),H = diag{−∂a, . . . ,−∂a},M = diag{−µ1, . . . ,−µN},
K = {kij}1≤i,j≤N . Hereni is the population density of fish in patchi, a is the age,

µi(a) is the mortality rate, and the coefficientskij represent the migration rates

from patchj to patchi, j 6= i. The system was introduced to describe evolution of

a continuous age-structured population of sole which, however, is further divided

into patches (say, egg, larvae, juvenile and adult). The characteristic feature of

the population is daily vertical migration provoked by light intensity of which is

highly dependent on patches. The small parameterε corresponds to the fact that

the migration processes occur at a much faster time scale than the demographic

ones (aging and death). This system must be supplemented by the boundary con-

dition of the McKendrick-Von Forester type

n(0, t) =

∞∫
0

B(a)n(a, t)da (221)

whereB(a) = diag{b1(a), . . . , bN(a)} gives the fertility at agea and patches1 to

N . The initial condition is given by

n(a, 0) = Φ(a). (222)

The transition matrixK is a typical transition matrix (of a time-continuous pro-

cess); that is off-diagonal entries are positive and columns sum up to0. We further

assume that it generates an irreducible (n-dimensional) semigroup. Thus,0 is the

dominant eigenvalue ofK with a positive eigenvectore which will be fixed to

satisfy1 · e = 1, where1 = (1, 1 . . . , 1). The vectore = (e1, · · · , eN) represents

the stable patch structure; that is, asymptotic distribution of the population into

the patches. Thus, it is reasonable to approximate

ei =
ni

n
, i = 1, . . . , N
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wheren =
∑N

i=1 ni. Adding together equations in (220) and using the above we

obtain

∂tn = −∂an− µ∗(a)n (223)

whereµ∗ = 1 · Me =
∑N

i=1 µiei is the so-called ’aggregate’ mortality. This

model, supplemented with appropriate averaged boundary condition is called the

aggregated model and is expected to provide averaged approximate description of

the population.

The assumptions allow to perform the compressed asymptotic analysis. The

spectral projectionsP ,Q : Rn → Rn are given by

Px = (1 · x)e, Qx = x− (1 · x)e

which gives the hydrodynamical spaceV := Span{e} and the kinetic space

W = ImQ = {x; 1 · x = 0},

as well as the solution decomposition

n = Pn +Qn = v + w = pe + w

wherep = p(a, t) is a scalar function. Applying the projections to both sides of

(220) we get

∂tv = P(H +M)Pv + P(H +M)Qw

∂tw = Q(H +M)Qw +Q(H +M)Pv +
1

ε
QKQw,

with projected initial conditionsv(0) =
o
v, w(0) =

o
w .

Denoting again bȳv andw̄ the bulk part of the solution and substituting the

expansion for̄w into (224) we obtain as before

w̄0 ≡ 0,

w̄1 = −(QKQ)−1Q(H +M)P v̄.
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Inserting the expressions for̄w0 andw̄1 into the expansion of the hydrodynamic

part of the system (224) gives the approximate ’diffusion’ equation

∂tv̄ = P(H +M)P v̄ − εP(H +M)Q(QKQ)−1Q(H +M)P v̄.

The explicit expressions for the involved operators can be calculated as

P(H +M)P v̄ = −(∂ap− p(1 · Me)e,

Q(H +M)P v̄ = −p(1 · Me−M)e,

P(H +M)Qx = −(1 · Mx− 1 · Mx)e,

and, denoting byh the unique solution inW = QX of

Kh = −(1 · Me−M)e

we obtain

P(H +M)Q(QKQ)−1Q(H +MP v̄ = p(1 · Mh).

Therefore

∂tp = −∂ap+ p(1 · Me + ε1 · Mh)

or, taking into account the form ofM, we obtain

∂tp = −∂ap− µ∗p+ ε(1 · Mh)p

so that the asymptotic procedure recovers the aggregated model (223) as well as

provides its first order correction.

We note that, contrary to the telegraph system, here we haven’t obtained a dif-

fusion equation. The (mathematical) reason for this that in the telegraph equation

the transport operator appears on the anti-diagonal and thus provides ’mixing’ of

the hydrodynamic and kinetic parts of the equation. Here the transport occurs

only on the diagonal hence, at the transport level, the patches are not mixed and

this feature is preserved in the approximating equation.

In this model it is impossible to neglect effects of the boundary conditions and

thus one needs to analyse the boundary and corner layers as well as the initial

layer. However, we will not discuss them here.
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7.1.4 Fokker-Planck equation of Brownian motion

We conclude with a brief discussion of a more complicated example of the

Fokker-Planck equation describingn-dimensional Brownian motion. The colli-

sion operatorC now is given by the three-dimensional differential operator

(Cu)(x, ξ) = ∂ξ(ξ + ∂ξ)u(x, ξ), (1)

x, ξ ∈ Rn and the streaming operatorS is of the form

(Su)(x, ξ) = ξ∂xu(x, ξ). (2)

Hereu is the particle distribution function in the phase space,x denotes the posi-

tion andξ the velocity of the particle.

The Fokker-Planck operator can be transformed to the well-known harmonic

oscillator operator: for the functionu(ξ) we defineξ =
√

2ζ ∈ Rn and

y(ζ) = (Anu)(ζ) := (
√

2)
n
2 e

|ζ|2
2 u(

√
2ζ). (3)

This is an isometry of the spaceL2(Rn, e
|ξ|2
2 dξ) ontoL2(Rn, dζ) which transforms

the Fokker-Planck collision operatorC into

C̃y =
1

2(
√

2)n/2
e−

|ζ|2
2

(
∂2

ζy − |ζ|2y + ny
)
. (4)

Dropping the normalizing factor we arrive at the harmonic oscillator operator in

L2(Rn), denoted hereafter byH,

(Hy)(ζ) = ∂2
ζy(ζ)− |ζ|2y(ζ) + ny(ζ). (5)

To analyse this operator we introduce the sesquilinear form

h(φ, ψ) =

∫
Rn

(
∂ζφ∂ζψ̄ + |ζ|2φψ̄ + φψ̄

)
dζ, (6)
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defined originally onC∞0 (Rn) and the Hilbert spaceH1 defined as the closure of

C∞0 (Rn) with respect to the norm‖φ‖H1 =
√
h(φ, φ). LetAh denote the operator

associated withh It follows that the spectrum ofAh consists only of eigenvalues

and the operator itself can be expressed in terms of the series of its eigenfunctions.

Using the separation of variables and the one-dimensional theory of the harmonic

oscillator we obtain the following expression for the eigenfunctions ofAh:

H(n)
α (ζ) =

(−1)|α|

(2|α|πn/2α!)1/2
e
|ζ|2
2 ∂αe|ζ|

2

=
n∏

i=1

H(1)
αi

(ζi), (7)

whereζ ∈ Rn andα = (α1, . . . αn) is a multi-index.

H
(1)
m is the normalized one-dimensional Hermite function corresponding to the

eigenvalueλm = 2m+ 1

Hm(ζ) :=
(−1)m√√
π2mm!

e
ζ2

2 ∂m
ζ e

−ζ2

. (8)

LetC denote the Fokker-Planck collision operator obtained fromAh by the inverse

transformation (3), and thus corresponding to the differential expression (1). For

k = 1, . . . , n and the multi-indexβ = (β1, . . . , βk) we define

Φ
(k)
β := A−1

k H
(k)
β ,

that is,

Φ(n)
α (ξ) =

(−1)|α|

(2π)n/4
√
α!
∂αe−

|ξ|2
2 =

n∏
i=1

Φ(1)
αi

(ξi). (9)

SinceAk is an isometric isomorphism, the family
{

Φ
(n)
α

}
α∈Nn

forms an orthonor-

mal basis inL2(Rn, e
|ξ|2
2 dξ). We have therefore

u =
∞∑

|α|=0

uαΦ(n)
α (10)

and

Cu = −
∞∑

|α|=1

|α|uαΦ(n)
α , (11)
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so that it is clear thatC is dissipative and satisfies all assumptions of the general

theory.

To conclude we derive the form of the diffusion equation. To this end we

express operatorS in terms of eigenfunctionsΦ(n)
α . Let us adopt the following

convention

α(i,±1) = (α1, . . . , αi ± 1, . . . , αn).

The Hermite functions satisfy the following recurrence formula forΦ
(n)
α . Let i =

1, . . . , n, then

ξiΦ
(n)
α =

√
αi + 1Φ

(n)
α(i,+1)(ξ) +

√
αiΦ

(n)
α(i,−1)(ξ). (12)

If someαi = 0, then naturally the second summand vanishes. By Eq. (12) we

obtain formally

Su = −
n∑

k=1

∂k

 ∞∑
|α|=0

(√
αkuα(k,−1) +

√
αk + 1uα(k,+1)

)
Φ(n)

α

 . (13)

The hydrodynamic space is clearly spanned byΦ
(n)
0 . Hence we denotēv = ρ̄Φ

(n)
0

andṽ1 = ρ̃Φ
(n)
0 . Introducing the notation

0(i; l) = (0, . . . , l, . . . , 0)

and

0(i, j; k, l) = (0, . . . , k, . . . , l, . . . , 0),

wherel (resp.(k, l)) are in thei-th (resp.i-th andj-th) place, we get

S v̄ = −
n∑

k=1

∂kΦ
(n)
0(k;1)ρ̄

and further

SQ(QCQ)−1QSP v̄

= −
n∑

k=1

∂k

(
n∑

l=1,l 6=k

∂lΦ
(n)
0(k,l;1,1) + ∂k

(√
2Φ

(n)
0(k,2) + Φ

(n)
0

))
ρ̄.
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Projecting this ontoΦ(n)
0 we get the diffusion operator in the form

PSQ(QCQ)−1QSP v̄ = −∆xv̄.

Similarly for the corrector of the initial value we obtain

PSQ(QCQ)−1 ◦
w= Φ

(n)
0

n∑
k=1

∂k
◦
u0(k;1)

and the initial layer corrector̃v1 will have the form

ṽ1

(
t

ε

)
= e−

t
ε Φ

(n)
0

n∑
k=1

∂k
◦
u0(k;1),

where
◦
u0(k;1) is the first moment of the initial value foru.

To formulate the final result of this section we introduce

%(t, x) :=

∫
R

u(t, x, ξ)dξ,

whereu is the solution of the initial value problem for the Fokker-Planck equation

of the Brownian motion. Let
◦
u∈ W 3

1 (Rn, L2(Rn, e
|ξ|2
2 dξ)), then∥∥∥∥%(t)− ρ̄(t)− ερ̃

(
t

ε

)∥∥∥∥
L2(Rn×Rn,e

|ξ|2
2 dxdξ)

= O(ε2) (14)

uniformly for t in bounded intervals of[0,∞[. Hereρ̄ is the solution of the fol-

lowing initial value problem

∂tρ̄ = ε∂2
xρ̄,

ρ̄(0) =
◦
u0 −ε

n∑
k=1

∂xk

◦
u0(k;1),

and the functioñρ in the initial layer corrector̃v1 = ρ̃Φ0 is given by

ρ̃

(
t

ε

)
= e−t/ε

n∑
k=1

∂xk

◦
u0(k;1).
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ized birth-and-death equations inlp spaces,Semigroup Forum, 2006,

to appear.

[20] F. E. Browder, On the spectral theory of elliptic differential operators,

Math. Ann, 142, 1961, 22–130.
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