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Abstract

A simple model of avascular solid tumour dynamics is studied in the paper. The
model is derived on the basis of reaction-diffusion dynamics and mass conservation law.
We introduce time delay in a cell proliferation process. In the case studied in this paper the
model reduces to one ordinary functional-differential equation of the form that depends
on the existence of necrotic core. We focus on the process of this necrotic core formation
and the possible influence of delay on it. Basic mathematical properties of the model are
studied. The existence, uniqueness and stability of steady state are discussed. Results of
numerical simulations are presented.

1 INTRODUCTION

The process of tumour growth and its dynamics is one of the most intensively studied processes
in the recent years. There have appeared many papers devoted to it (cf. [1,2,6,8,9,12] and
references therein). This process can be divided into several different stages, starting from the
very early stage of solid tumour without necrotic core inside (cf. [6]). In the present paper we
focus on the next stage, i.e. the process of necrotic core formation. In this stage there are three
main cellular processes — proliferation, apoptosis and necrosis. It should be marked that solid
tumour growth leads to the limited size, which is shown theoretically (compare [18,19]) and
experimentally ( [2,3,10,12,20]) as well.

Following [6,12] we introduce time delay to the model presented in [8]. In [12] the model
of necrotic core formation without time delay was considered. On the other hand, the model
studied in [6] does not include a process of necrotic core formation. The aim of this paper is to
derive and analyse the model of necrotic core formation with the presence of time delay in the
proliferation process, as proposed in [8].

The model we study is based on the idea of symmetric growth of avascular multicellular
spheroids (MCS), which was described in [8]. It is assumed that the tumour growth depends
on the nutrient (like glucose or oxygen) concentration. However, the mean time of the nutrient
diffusion is much shorter then the mean time of tumour doubling that leads to a quasi-steady
state approximation. The following notation is used in the paper:

e R(t) and Rpe.(t) denote the external and necrotic radius of MCS at time ¢, respectively;

e 0, denotes the external concentration of nutrients, which is assumed to be constant;
oy is the minimal nutrient concentration needed for proliferation; o = 0., — on and we
assume o > 0;

e [, a, b are positive coefficients of proliferation, apoptosis and necrosis, respectively and s
is a scaling constant.

Following [8] we introduce time delay to the model, namely in proliferation process. A heuristic
argument for introducing time delay is the duration of the mitosis process that could be impor-
tant. Time delays can be introduced also for another cellular processes (compare [7,8,13,14]) or



for next stages of tumour growth, e.g. for angiogenesis as in [4], where delays explain oscillations
that appear in vascular tumour growth ( [15]).

Finally, in the case of the presence of necrotic part, the tumour evolution is governed by
the following system of equations (see [8] for the detailed derivation)

5 = oo (R R (R4 2R, (1)
R GUR(E 7). Rt = 7)) = S (@(0) — (b — )R (1) (1b)
“ (R, R(t 7)),
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and Ry is described by the implicit function of R in Eq. (1a).

2 DERIVATION AND ANALYSIS OF THE MODEL

At the beginning of this Section we notice that Eqgs. (1) are well posed only if there exist positive
solutions to (la) for R = R(t) and R = R(t — 7) which are smaller then R(t) and R(t — 7),
respectively. Now, we derive a final model and study the existence and properties of solutions
to it.

Eq. (1a) define the implicit function which describes the connection between R and Rjec.

Following the analysis presented in [12] we obtain that if R is small, i.e. R < R= @/GT”, then

there is no positive solution to Eq. (1a) and then it is reasonable to assume that R,e. = 0. On
the other hand, if
~ 60
— /= 2

then Eq. (1a) has exactly one positive solution.

We consider four cases. .

If R(t —7) > R, and R(t) > R, then the tumour growth is described by Egs. (1).

If R(t—7)> R but R(t) < R, then we get

RQCZ{ = G(R(t = 7), Rueelt — 7)) — %“33( )< A(R(E), R(t 7). ®)

If R(t —7) < R we should exclude the parameter o which is connected with the necrosis
process. Therefore, Eq. (1a) yields oy = 0o — £ R(t — 7). Then Eq. (1b) takes the form

R?(t)%zé(—%R%t—mwmm—ﬂ—aR3<>) “ RR).R(E-7)  (4)
if R(t) < R and
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Combining Egs. (1b), (3), (4) and (5) we obtain the final model

fo(R(t),R(t — 7)) if R(t) > Rand R(t —7) > R;

Rg(t)d_R _ AR, R(t—7)) i R(1) < JE? and R(t —7) > Jf‘ﬁ; ©
dt fo(R(t),R(t—7)) if R(t) < Rand R(t—7) < R;
f3(R(t),R(t—7)) ifR(t)> Rand R(t—7) <R

with an initial condition R(t) = Ry(t) for t € [—7, 0] and some positive continuous function R.
The right-hand side of Eq. (6) is a continuous Lipschitz function of R(¢) and R(t — 7). This
implies that the model is well posed and its solutions exist and are unique (see [17]) .
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Notice that R = T (000 - g) is the steady state for Eq. (4). We focus on the process of
s

necrotic core formation and hence, Ry(t) < R for all t € [—7,0], i.e. there is no necrotic part
at the beginning. We have two cases.

1. If R < R or, equivalently, 30s + 20N < 5%, then oy < g—‘s‘ < 4%. Consequently, Th 2.1
from [6] implies that the steady state R is stable independently on 7. Following the proof
of Th. 3.1 from [6] we prove that if the initial data satisfies Ro(t) < R, then the steady
state R is globally stable. Hence, no necrotic core is formed in this case.

2. IfR > R, then following the proof of Th 3.1 from [6] we show that R(t) reaches the level
R for some t > 0 and the necrotic core is formed.

For the necrotic core formation, the only interesting case is the second one. Hence, combining
the inequality which defines the second case with the assumption o > 0 one gets

D
2% - 3000 + 20N < 50 . (7)
s

As in [12] the asymptotic behaviour of R,..(R) can be approximated as follows:

[20 201
RneC<R>NR— ?—3—FE, as R—>—i—oo

On the other hand, if Ryee — 0, i.e. R — R, the asymptotic is the following:

40 4o |60
Foel ) =\~ TR\ T

Using the formula for R/ .(R) that was calculated in [12] we have

nec

d R2 + RRnec + R (R - Rnec)2
. _ -1 — nec _ .
i [t~ fnee(R)) 3R R SRR

This yields, that the size of the proliferation ring decreases as the tumour radius increases and
give the following estimate for R

2 < ) - Rty < |/ ®)

The same analysis as in [12] shows that there exists at least one steady state R. In the next
section we focus on the problem of uniqueness and stability of R.
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Lemma 1 (Nonnegativity) For any nonnegative initial datum, the solution to (6) is non-
negative.

Proof:

Notice, that if a solution to our model is negative, then there exists time to such that R(ty) = 0.
If R(to — 7) < R, then the solution fulfills Eq. (4) and analysis presented in [6] yields that it
cannot be negative. On the other hand, if R(ty — 7) > R, then inequality

nec

G(R, Rpec) = % (R — Rpee)’ (R*+ 3RRpec + R2.) + SUTN (R* = R%.) >0

holds and theorems from [5] yield that solutions to our model are nonnegative. [

Lemma 2 (Global existence) Let an initial datum Ry(t) > 0 for all t € [—7,0]. Then for
any t > 0 the following inequality

R(t) < max{ sup Ro(t), (saoo —a+ \/§> R} = R 9)

te[—7,0]
holds and the solution is globally defined.

Proof:

Assume that Ineq. (9) does not hold for some time ¢ > 0. Due to continuity of R there exists
time t¢ such that R(ty) = Rmax, R(f) < Rumax for any t < to and R'(to) > 0. The estimates (8)
yields

32%% <R ((saoo —a+ ﬂ) R- Rmax) <0,

which contradicts the assumption (9). The upper estimates together with nonnegativity of the
solution yields that it is globally defined. |

3 Steady state

It is obvious that a trivial steady state always exists. For its stability we refer to [6]. In this
Section we focus on the problem of uniqueness of the positive steady state for (6) in the case
when a formation of necrotic core is possible. In order to reduce number of coefficients we
denote

_ 100y _ 10a B 106 |60 =
B = T 52—; B = p1— B ’V—? n= ?—R-

Thus, we can rewrite the right-hand side of Eq. (1b) in the form

%F@ y) = ‘;—E ((z =9’ + 32y + %) + Blx —y)(@® +ay +y*) —9’) . (10)

and Eq. (1a) as
e = (z—y)* (v +2y). (11)

First we state the following



Lemma 3 Letyv> 0,7 >0, n>+ 08>0 and

139 + 36v/3 3

>0 d <
s ana 23

~ 8.754. (12)
Let y(zx) be a solution to (11) having the property 0 < y(x) < z. Then there is a unique solution
to equation F(x,y(z)) =0 for x >n.

Proof:
Denote a solution to F(x,ys) = 0 by yo(x). Notice first, that function y, is well defined for
x > 1. Indeed, F(z,0) = 23(2* + 8) > 0 for x > n if n*> + 3 > 0. On the other hand

oF

a—y(x, y) = —5y(z — y)2(y + 22) — 3(B+7)y2 < 0.

and for any fixed zg lim,_, o F'(20,y) = —00.
Using an implicit function theorem we obtain:

, 22 + xy + y?
y(x):?)—
zy
Sx(x —y)?*(x + 2y) + 3322
) = oo YVt 2)

= Byl — 9)2(y + 20) + 33 + )92

We would like to show, that y' — y{ grows. This yields that y — yo has at most one extrema
and this give that there exists only one solution to F'(x,y(z)) = 0 since the number of solution
to F(x,y(x)) = 0 is odd. We substract and then differentiate y'(z) — y;(z) with respect to .
Since the denominator is positive we consider only the nominator which has the form

V(z,y) =25(z — y)*(z + 2y) (22" + 223y + 92%y* + 4ay® + o) (13a)
+30(z — y)? (ﬁ(az + ) (32" 4+ 2y + 92%y® + 3xy® + 2y*) (13b)
+ yy(x + 2y)(2° + 52’y + 22y + y3)) (13c

+98%y(x — y) (x + 2) (22 + ) (32® — 2xy + y°) (

)
13d)
+186yy(a — y)(z + 2y)(32° — 2y +°) (13e)
—9Vy (x — y)*(z + 2y) (z + ). (13f)

Notice, that for 3 > 0 lines (13a)-(13c) are nonnegative. Hence, we consider the second part
of V, presented in the lines (13d)—(13f). Subtracting a common part 9y(x — y)(z + 2y) which
is positive we consider

Vi(z,y) = 6°(2z +y)(3z® — 2zy + y*) + 287(32” — 2%y + v*) — Yy(z — y)(z + v).

We show, that V(z,y) > 0, assuming that % < x —y <n. Algebraic manipulations leads to

V(z,y) = (B+7)(662° — (6+ )2y + (B+7)y°)

Substituting p = % one obtains

V(z,y) =a® — pe’y + pay® > 2° — pa®(x — —= + plz —n)° = g(x).

Sl=



Thus, using the assumption % <z—y<nwe get

V3
g(x) = 2" - pna® + 3pm*x — un’.

It can be readily calculated, that Assumption of Lemma give g(n) > 0. Calculating ¢'(x) it is
easy to find, that if ¢'(xo) = 0, then zy < 1, due to Assumption of Lemma. [ |

Analogous calculations lead to the following estimate. There exists a unique positive steady
state if the following condition

100
277 < 14K 3? , with K = 7774 + 150%3 + 201y + 184,

is fulfilled.
Using Lemma 3 we can readily prove the following

Theorem 4 Let Assumptions of Lemma 3 are fulfilled and all coefficients are positive. Then

there exists a unique positive steady state R of Model (6). Moreover R > \/GTU and it is

asymptotically stable independently on the magnitude of T.

Proof:
First notice, that (7) is equivalent to (12). Hence, Lemma 3 yields that the steady state exists
and is unique.

In order to study stability of the steady state we substitute z(t) = R3*(t) and y(t) = R3(t).
Hence, Eq. (1b) takes the form

&= % (V= 9 (Va2 + 33/m5 + /) + Bulw =) ) (t = 7) = (Balw =) +79) (1))

tSF

Without lost of generality we may assume that 55 = 1 (we can rescale time to eliminate this

coefficient). Thus, we have

= (Vo= P (Va2 + 35+ 3/3P) + Bile =) (t=7) = (Bale =) +99) (). (14)

Calculating the characteristic quasi-polynomial at the steady state z and denoting y = y(Z)
one obtains

W(A) =\X—Ae™ — B, (15)
where
A= V= VPV 4+ 4Ym5 + P ﬁlf—\f)(3f+2\ﬁ+f o
9x
5 (VT - BV + 2975 + Y5 _vf(f+4\/_+f -
3T 37

For 7 = 0 the uniqueness of steady state, and the condition F'(n,0) > 0 implies that the steady
state is stable and A + B < 0. It is easy to see that B — A < 0 for every positive parameters
that implies stability of R independently on 7 — for details see [11], compare also [16]. [ |



4 NUMERICAL SIMULATIONS AND DISCUSSION

In this Section we present results of numerical simulations. The aim of these simulations is
to compare the behaviour of solutions to the model presented in this paper with the model
which do not consider the necrotic core formation as well as illustrate some possible behaviour
of the solution to Model (6). We study also dependence of solutions on the model parameters,
particularly on time delay. Th. 4 implies that for a wide range values of coefficients there should
not be a quantitative change in the behaviour of the solutions. At the beginning, we use the
following values of parameters

0o =12.0, oy=10, TI'=300, a=20, b=20, s=10, 7=06. (18)

In this case, the coefficients used in Section 3 are the following

5:—1 y=z n=1+v22~148.
3 3
The constant function Ry(t) = Ry = 0.5 is taken as an initial one. The notation used on
the pictures is the following: the solid line (R') denotes the tumour radius in the model with
necrotic core formation; the dashed line (R...) describes the radius of the necrotic core; the
dotted line (R?) describes the radius of tumour without necrotic core formation. The stars
denote points at which the tumour radius reaches the level R, i.e. the necrotic core is formed

(or disappeared).

Figure 1: On the left-hand figures coefficients as stated in (18), on the right-hand oy = 0 and
I'=0.1.

First notice, that periodic solutions which appear in the model without necrotic core for-
mation are not present if we consider this process (see Figs. 1). The coefficients used in the
cases presented on Figs. 1 do not fulfill the assumption of Th. 4, since 3 < 0. The case where
B > 0 but Ineq. (12) do not hold is presented on Figs. 2. It turns out that for a wide range of
coefficients (for which) the dependence of solutions on time delay is not relevant.

Figs. 1 show also the dependence of the solution on parameters I' and oy. If we put I’
small, then (as it could be expected) the tumour growth is slower at the begging. However,
the behaviour of solutions for greater values of time ¢ is similar to those with larger I'. In fact,
notice that changes of I' do not change the condition (12).

In Figs. 3 and on the right-hand of Figs. 2 the solutions form “stairs”. Notice, that solutions
stabilize very fast at some level. Then, after some time when delayed functions reach the higher
values the solution grows very rapidly to the new quasi-steady state. This behaviour suggests
that the convergence of solutions assuming given, constant delayed function, is very fast. Notice
that the time the solution needs to approximate to the steady state is greater for larger values
of delay parameter. These are the only observed influence of time delay.
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Figure 2: On the left-hand figures b = 90, on the right-hand b = 90 and 7 = 10. For both
graphs o = 3 and hence, 3 > 0.
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Figure 3: Comparison of solutions to the model with necrotic core formation depending on
parameter 7. On the left-hand 7 = 5 and 7 = 20 and a = 3.0 on the right-hand one.

We would like to point out, that in the cases presented in Figs. 3, solutions to the model
without necrotic core formation become negative vary fast (for ¢t around 4 at the case presented
on the left-hand figure and for ¢ around 12 for the case presented on the right-hand one).

The conclusion is that the process of necrotic core formation is very important. The be-
haviour of solutions is more stable in this case. Theorem 4 yields that for a wide range of
coefficients steady state is asymptotically stable. On the other hand, computer simulations
suggest that Assumption of Th. 4 can be weakened.

The analysis shows that if R < R, then the steady state is globally stable. Simulations
suggest that it remains stable when the necrotic core is formed.

Figure 4: The dependence of the value of steady state (on the y-axes) on the minimal nutrient
coefficient oy (on x-axes);



Next, we study the dependence on the minimal nutrient concentration oy. Although the
qualitative behaviour is similar for all positive values of oy, the surprising numerical result is
that the steady state is not a decreasing function of o (see Fig. 4). For o = 0 the tumour
radius stabilises around 4.2, then this level increases and the maximal value is achieved for oy
between 6 and 7 and then the value of steady state decreases.

On the other hand, the width of proliferation ring decreases as o increases (i.e. o decreases)
which could be expected.

25

Figure 5: Comparison of solutions to the model with necrotic core formation depending on
parameter oy. On the left-hand figure oy = —12, and —14 on the right-hand one.

Finally, we want to present that delay may be important. Figs. 5 show that undumping
oscillations may arise. However, to obtain it negative values of parameter oy was used, which
implies that Assumptions of Th. 4 are not valid for this case. Hence, there is no sense to
consider it from the biological point of view.

For the values of coefficients used in the simulations the qualitative behaviour of the
model (6) with different values of delay parameter is similar to the model without delay pre-
sented in [12]. However, for large values of time delay the influence of the delay is noticeable
(see Figs. 3) On the other hand, Figs. 5 shows that delay could be important for some values
of parameters. However, we have only shown that the steady state is locally stable for some
range of parameters, the results of the simulations give a hint that there might exists only one
globally stable steady state for any nonnegative coefficients. The solutions to Model (6) are
more stable than the solutions to the model presented in [6], in which the process of necrotic
core formation was not considered.
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